Transmission Electron Microscopy and Tomography on Plasma Membrane Sheets to Study Secretory Docking

  • Franck Delavoie
  • Cathy Royer
  • Stéphane Gasman
  • Nicolas Vitale
  • Sylvette Chasserot-GolazEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2233)


To study the formation and the architecture of exocytotic site, we generated plasma membrane (PM) sheets on electron microscopy grids to visualize the membrane organization and quantitatively analyze distributions of specific proteins and lipids. This technique allows observing the cytoplasmic face of the plasma membrane by transmission electron microscope. The principle of this approach relies on application of mechanical forces to break open cells. The exposed inner membrane surface can then be visualized with different electron-dense colorations, and specific proteins or lipids can be detected with gold-conjugated probes. Moreover, the membrane sheets are sufficiently resistant to support automated acquisition of multiple-tilt projections, and thus electron tomography allows to obtain three-dimensional (3D) ultrastructural images of secretory granule docked to the plasma membrane.

Key words

Plasma membrane Transmission electron microscopy Protein distribution Lipid distribution Electron tomography Exocytotic site 



We acknowledge the microscopy facilities of  the Plateforme de microscopie électronique METi (Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS 31062, Toulouse, France) and the municipal slaughterhouse of Haguenau (France) to provide bovine adrenal glands. This work was supported by CNRS, Université de Strasbourg, Inserm, and FRM.


  1. 1.
    Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–207CrossRefGoogle Scholar
  2. 2.
    Bombardier JP, Munson M (2015) Three steps forward, two steps back: mechanistic insights into the assembly and disassembly of the SNARE complex. Curr Opin Chem Biol 29:66–71CrossRefGoogle Scholar
  3. 3.
    Ammar MR, Kassas N, Chasserot-Golaz S, Bader MF, Vitale N (2013) Lipids in regulated exocytosis: what are they doing? Front Endocrinol (Lausanne) 4:125CrossRefGoogle Scholar
  4. 4.
    Umbrecht-Jenck E, Demais V, Calco V, Bailly Y, Bader MF, Chasserot-Golaz S (2010) S100A10-mediated translocation of annexin-A2 to SNARE proteins in adrenergic chromaffin cells undergoing exocytosis. Traffic 11:958–971CrossRefGoogle Scholar
  5. 5.
    Gabel M, Delavoie F, Demais V, Royer C, Bailly Y, Vitale N, Bader MF, Chasserot-Golaz S (2015) Annexin A2-dependent actin bundling promotes secretory granule docking to the plasma membrane and exocytosis. J Cell Biol 210:785–800CrossRefGoogle Scholar
  6. 6.
    Prior IA, Muncke C, Parton RG, Hancock JF (2003) Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 160:165–170CrossRefGoogle Scholar
  7. 7.
    Wilson BS, Steinberg SL, Liederman K, Pfeiffer JR, Surviladze Z, Zhang J, Samelson LE, Yang LH, Kotula PG, Oliver JM (2004) Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes. Mol Biol Cell 15:2580–2592CrossRefGoogle Scholar
  8. 8.
    Lillemeier BF, Pfeiffer JR, Surviladze Z, Wilson BS, Davis MM (2006) Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci U S A 103:18992–18997CrossRefGoogle Scholar
  9. 9.
    Gabel M, Delavoie F, Royer C, Tahouly T, Gasman S, Bader MF, Vitale N, Chasserot-Golaz S (2019) Phosphorylation cycling of Annexin A2 Tyr23 is critical for calcium-regulated exocytosis in neuroendocrine cells. Biochim Biophys Acta, Mol Cell Res 2019:1207–1217Google Scholar
  10. 10.
    Gutierrez LM (2012) New insights into the role of the cortical cytoskeleton in exocytosis from neuroendocrine cells. Int Rev Cell Mol Biol 295:109–137CrossRefGoogle Scholar
  11. 11.
    Zhang J, Leiderman K, Pfeiffer JR, Wilson BS, Oliver JM, Steinberg SL (2006) Characterizing the topography of membrane receptors and signaling molecules from spatial patterns obtained using nanometer-scale electron-dense probes and electron microscopy. Micron 37:14–34CrossRefGoogle Scholar
  12. 12.
    Zhang Z, Ottens AK, Larner SF, Kobeissy FH, Williams ML, Hayes RL, Wang KK (2006) Direct rho-associated kinase inhibition [correction of inhibiton] induces cofilin dephosphorylation and neurite outgrowth in PC-12 cells. Cell Mol Biol Lett 11:12–29CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2021

Authors and Affiliations

  • Franck Delavoie
    • 1
  • Cathy Royer
    • 2
  • Stéphane Gasman
    • 3
  • Nicolas Vitale
    • 3
  • Sylvette Chasserot-Golaz
    • 3
    Email author
  1. 1.Centre National de la Recherche Scientifique, Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie IntégrativeUniversité de ToulouseToulouseFrance
  2. 2.Plateforme Imagerie In Vitro, Neuropôle de StrasbourgStrasbourgFrance
  3. 3.Centre National de la Recherche ScientifiqueUniversité de Strasbourg, Institut des Neurosciences Cellulaires et IntégrativesStrasbourgFrance

Personalised recommendations