Spatial and Temporal Aspects of Exocytosis Studied on the Isolated Plasma Membranes

  • Ira MilosevicEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2233)


Exocytosis of large-dense core vesicles in neuroendocrine cells is a highly regulated, calcium-dependent process, mediated by networks of interrelated proteins and lipids. Here, I describe experimental procedures for studies of selective spatial and temporal aspects of exocytosis at the plasma membrane, or in its proximity, using adrenal chromaffin cells. The assay utilizes primary cells subjected to a brief ultrasonic pulse, resulting in the formation of thin, flat inside-out plasma membranes with attached secretory vesicles and elements of cell cytoskeleton. In this model, secretion of plasma membrane–attached secretory vesicles was found to be dependent on calcium and sensitive to clostridial neurotoxins. Depending on the probe selected for secretory vesicle cargo, protein, and/or lipid detection, this simple assay is versatile, fast and inexpensive, and offers excellent spatial resolution.

Key words

Cell-free assay Secretion assay LDCVs Neuropeptide Y Isolated membrane sheets Membrane patches SNAREs SNAP-25 Syntaxin 1 TIRF alternative 



I thank Dr. N. Raimundo for a discussion, and Dr. A. Milosevic for help with the figures. This work is supported by the Emmy Noether Young Investigator Award (1702/1) of the German Research Foundation (DFG) and the Schram Stiftung (T287/25457). No competing financial interests are declared.


  1. 1.
    Neher E (2018) Neurosecretion: what can we learn from chromaffin cells. Pflugers Arch 470(1):7–11CrossRefGoogle Scholar
  2. 2.
    Marengo FD, Cárdenas AM (2018) How does the stimulus define exocytosis in adrenal chromaffin cells? Pflugers Arch 470(1):155–167CrossRefGoogle Scholar
  3. 3.
    Chanaday N, Cousin M, Milosevic I, Morgan JR, Watanabe S (2019) The synaptic vesicle cycle revisited: new insights into the modes and mechanisms. J Neurosci 39(42):8209–8216CrossRefGoogle Scholar
  4. 4.
    Eiden LE, Jiang SZ (2018) What's new in endocrinology: the chromaffin cell. Front Endocrinol (Lausanne) 9:711. Scholar
  5. 5.
    Morgan A, Burgoyne RD (1997) Common mechanisms for regulated exocytosis in the chromaffin cell and the synapse. Semin Cell Dev Biol 8(2):141–149CrossRefGoogle Scholar
  6. 6.
    Bader MF, Holz RW, Kumakura K, Vitale N (2002) Exocytosis: the chromaffin cell as a model system. Ann N Y Acad Sci 971:178–183CrossRefGoogle Scholar
  7. 7.
    Neher E, Zucker RS (1993) Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 10:21–30CrossRefGoogle Scholar
  8. 8.
    Malacombe M, Bader MF, Gasman S (2006) Exocytosis in neuroendocrine cells: new tasks for actin. Biochim Biophys Acta 1763(11):1175–1183CrossRefGoogle Scholar
  9. 9.
    Trifaró JM, Gasman S, Gutiérrez LM (2008) Cytoskeletal control of vesicle transport and exocytosis in chromaffin cells. Acta Physiol (Oxf) 192(2):165–172CrossRefGoogle Scholar
  10. 10.
    Lang T, Bruns D, Wenzel D, Riedel D, Holroyd P, Thiele C, Jahn R (2001) SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J 20:2202–2213CrossRefGoogle Scholar
  11. 11.
    Milosevic I, Sørensen JB, Lang T, Krauss M, Nagy G, Haucke V, Jahn R, Neher E (2005) Plasmalemmal phosphatidylinositol-4,5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells. J Neurosci 25(10):2557–2565CrossRefGoogle Scholar
  12. 12.
    Avery J, Jahn R, Edwardson JM (1999) Reconstitution of regulated exocytosis in cell-free systems: a critical appraisal. Annu Rev Physiol 61:777–807CrossRefGoogle Scholar
  13. 13.
    Zimmerberg J, Blank PS, Kolosova I, Cho MS, Tahara M, Coorssen JR (2000) A stage-specific preparation to study the calcium-triggered fusion steps of exocytosis: rationale and perspectives. Biochimie 82:303–314CrossRefGoogle Scholar
  14. 14.
    Hay JC, Martin TF (1993) Phosphatidylinositol transfer protein required for ATP-dependent priming of calcium activated secretion. Nature 366:572–575CrossRefGoogle Scholar
  15. 15.
    Ann K, Kowalchyk JA, Loyet KM, Martin TFJ (1997) Novel Ca2+−binding protein (CAPS) related to UNC-31 required for Ca2+-activated exocytosis. J Biol Chem 272:19637–19640CrossRefGoogle Scholar
  16. 16.
    Vacquier V (1975) The isolation of intact cortical granules from sea urchin eggs: calcium ions trigger granule discharge. Dev Biol 43:62–74CrossRefGoogle Scholar
  17. 17.
    Crabb JH, Jackson RC (1985) In vitro reconstitution of exocytosis from plasma membrane and isolated secretory vesicles. J Cell Biol 101:2263–2273CrossRefGoogle Scholar
  18. 18.
    Martin TF, Kowalchyk JA (1997) Docked secretory vesicles undergo Ca2+-activated exocytosis in a cell-free system.J. Biol Chem 272(22):14447–14453CrossRefGoogle Scholar
  19. 19.
    Avery J, Ellis DJ, Lang T, Holroyd P, Riedel D, Henderson RM, Edwardson JM, Jahn R (2000) A cell-free system for regulated exocytosis in PC12 cells. J Cell Biol 148:317–324CrossRefGoogle Scholar
  20. 20.
    Dernick G, Alvarez de Toledo G, Lindau M (2003) Exocytosis of single chromaffin granules in cell-free inside-out membrane patches. Nat Cell Biol 5(4):358–362CrossRefGoogle Scholar
  21. 21.
    Nagy G, Milosevic I, Fasshauer D, Müller M, de Groot B, Lang T, Wilson MC, Sørensen JB (2005) Alternative splicing of SNAP-25 regulates secretion through non-conservative substitutions in the SNARE domain. Mol Biol Cell 16:5675–5685CrossRefGoogle Scholar
  22. 22.
    Nagy G, Milosevic I, Mohrmann R, Wiederhold K, Walter AM, Sørensen JB (2008) The SNAP-25 linker as an adaptation toward fast exocytosis. Mol Biol Cell 19(9):3769–3781CrossRefGoogle Scholar
  23. 23.
    Barszczewski M, Chua JJ, Stein A, Winter U, Heintzmann R, Zilly FE, Fasshauer D, Lang T, Jahn R (2008) A novel site of action for alpha-SNAP in the SNARE conformational cycle controlling membrane fusion. Mol Biol Cell 19(3):776–784CrossRefGoogle Scholar
  24. 24.
    de Wit H, Walter A, Milosevic I, Gulyás-Kovács A, Sørensen JB, Verhage M (2009) Four proteins that dock secretory vesicles to the target membrane. Cell 138(5):935–946CrossRefGoogle Scholar
  25. 25.
    Wu M, Huang B, Graham M, Raimondi A, Heuser JE, Zhuang X, De Camilli P (2010) Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system. Nat Cell Biol 12(9):902–908CrossRefGoogle Scholar
  26. 26.
    Wu M, De Camilli P (2012) Supported native plasma membranes as platforms for the reconstitution and visualization of endocytic membrane budding. Methods Cell Biol 108:3–18PubMedGoogle Scholar
  27. 27.
    Milosevic I (2018) Spatial and temporal aspects of phosphoinositides in endocytosis studied in the isolated plasma membranes. Methods Mol Biol 1847:147–160CrossRefGoogle Scholar
  28. 28.
    Lang T, Wacker I, Steyer J, Kaether C, Wunderlich I, Soldati T, Gerdes HH, Almers W (1997) Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy. Neuron 18(6):857–863CrossRefGoogle Scholar
  29. 29.
    Zhang XA, Martin TFJ (2018) High throughput NPY-Venus and serotonin secretion assays for regulated exocytosis in neuroendocrine cells. Bio Protoc 8(1):e2680PubMedPubMedCentralGoogle Scholar
  30. 30.
    Holroyd P, Lang T, Wenzel D, De Camilli P, Jahn R (2002) Imaging direct, dynamin-dependent re-capture of fusing secretory granules on plasma membrane lawns from PC12 cells. Proc Natl Acad Sci U S A 99(26):16806–16811CrossRefGoogle Scholar
  31. 31.
    Milosevic I (2018) Revisiting the role of clathrin-mediated endoytosis in synaptic vesicle recycling. Front Cell Neurosci 12:27CrossRefGoogle Scholar
  32. 32.
    Sørensen JB, Nagy G, Varoqueaux F, Nehring RB, Brose N, Wilson MC, Neher E (2003) Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 114(1):75–86CrossRefGoogle Scholar
  33. 33.
    Martin TF, Walent JH (1989) A new method for cell permeabilization reveals a cytosolic protein requirement for Ca2+-activated secretion in GH3 pituitary cells. J Biol Chem 264(17):10299–10308PubMedGoogle Scholar
  34. 34.
    Farsi Z, Gowrisankaran S, Matija K, Rammner B, Woehler A, Mim C, Jahn R, Milosevic I (2018) Clathrin coat controls vesicle acidification by blocking vacuolar ATPase activity. eLife 7.
  35. 35.
    Rasband WS. ImageJ National Institutes of Health, Bethesda. Accessed 1 June 2019
  36. 36.
    Lang T, Margittai M, Hölzler H, Jahn R (2002) SNAREs in the native plasma membranes are active and readily form core complexes with endogenous and exogenous SNAREs. J Cell Biol 158(4):751–760CrossRefGoogle Scholar
  37. 37.
    Sørensen JB, Wiederhold K, Müller M, Milosevic I, Nagy G, de Groot B, Grubmüller H, Fasshauer D (2006) Sequential N- to C-terminal zipping-up of the SNARE complex drives priming and fusion of secretory vesicles. EMBO J 25(5):955–966CrossRefGoogle Scholar
  38. 38.
    Smith GL, Miller DJ (1985) Potentiometric measurements of stoichiometric and apparent affinity constants of EGTA for protons and divalent ions including calcium. Biochim Biophys Acta 839(3):287–299CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2021

Authors and Affiliations

  1. 1.European Neuroscience Institute (ENI)A Joint Initiative of the University Medical Center Göttingen and the Max Planck SocietyGöttingenGermany
  2. 2.Wellcome Centre for Human Genetics, Nuffield Department of MedicineNIHR Oxford Biomedical Research Centre, University of OxfordOxfordUK

Personalised recommendations