Measurements of Compensatory Endocytosis by Antibody Internalization and Quantification of Endocytic Vesicle Distribution in Adrenal Chromaffin Cells

  • Mara Ceridono
  • Sylvette Chasserot-Golaz
  • Nicolas Vitale
  • Stéphane Gasman
  • Stéphane OryEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2233)


Plasma membrane proteins are amenable to endocytosis assays since they are easily labeled by reagents applied in the extracellular medium. This has been widely exploited to study constitutive endocytosis or ligand-induced receptor endocytosis. Compensatory endocytosis is the mechanism by which components of secretory vesicles are retrieved after vesicle fusion with the plasma membrane in response to cell stimulation and a rise in intracellular calcium. Luminal membrane proteins from secretory vesicles are therefore transiently exposed at the plasma membrane. Here, we described an antibody-based method to monitor compensatory endocytosis in chromaffin cells and present an image-based analysis to quantify endocytic vesicles distribution.

Key words

Compensatory endocytosis Large dense core vesicle Neuroendocrine cells Chromaffin cells Internalization Dopamine-β-hydroxylase 


  1. 1.
    Newton AJ, Kirchhausen T, Murthy VN (2006) Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc Natl Acad Sci U S A 103:17955–17960CrossRefGoogle Scholar
  2. 2.
    Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57:315–344CrossRefGoogle Scholar
  3. 3.
    Smith C, Moser T, Xu T et al (1998) Cytosolic Ca2+ acts by two separate pathways to modulate the supply of release-competent vesicles in chromaffin cells. Neuron 20:1243–1253CrossRefGoogle Scholar
  4. 4.
    Artalejo CR, Elhamdani A, Palfrey HC (2002) Sustained stimulation shifts the mechanism of endocytosis from Dynamin-1-dependent rapid endocytosis to Clathrin- and Dynamin-2-mediated slow endocytosis in chromaffin cells. Proc Natl Acad Sci U S A 99:6358–6363CrossRefGoogle Scholar
  5. 5.
    Mosharov EV, Sulzer D (2005) Analysis of exocytotic events recorded by amperometry. Nat Methods 2:651–658CrossRefGoogle Scholar
  6. 6.
    Sankaranarayanan S, Ryan TA (2000) Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat Cell Biol 2:197–204CrossRefGoogle Scholar
  7. 7.
    Allersma MW, Wang L, Axelrod D et al (2004) Visualization of regulated exocytosis with a granule-membrane probe using Total internal reflection microscopy. Mol Biol Cell 15:4658–4668CrossRefGoogle Scholar
  8. 8.
    Olivo-Marin J-C (2002) Extraction of spots in biological images using multiscale products. Pattern Recogn 35:1989–1996CrossRefGoogle Scholar
  9. 9.
    Ory S, Ceridono M, Momboisse F et al (2013) Phospholipid Scramblase-1-induced lipid reorganization regulates compensatory endocytosis in neuroendocrine cells. J Neurosci 33:3545–3556CrossRefGoogle Scholar
  10. 10.
    Houy S, Estay-Ahumada C, Croisé P et al (2015) Oligophrenin-1 connects Exocytotic fusion to compensatory endocytosis in neuroendocrine cells. J Neurosci 35:11045–11055CrossRefGoogle Scholar
  11. 11.
    Ceridono M, Ory S, Momboisse F et al (2011) Selective recapture of secretory granule components after full collapse exocytosis in neuroendocrine chromaffin cells. Traffic 12:72–88CrossRefGoogle Scholar
  12. 12.
    Domínguez N, Rodríguez M, Machado JD et al (2012) Preparation and culture of adrenal chromaffin cells. Methods Mol Biol 846:223–234CrossRefGoogle Scholar
  13. 13.
    Thahouly T, Tanguy E, Raherindratsara J, et al (2020) Bovine chromaffin cells: culture and fluorescent assay for secretion. This issueGoogle Scholar
  14. 14.
    Perrin D, Aunis D (1985) Reorganization of alpha-fodrin induced by stimulation in secretory cells. Nature 315:589–592CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2021

Authors and Affiliations

  • Mara Ceridono
    • 1
  • Sylvette Chasserot-Golaz
    • 1
  • Nicolas Vitale
    • 1
  • Stéphane Gasman
    • 1
  • Stéphane Ory
    • 1
    Email author
  1. 1.Centre National de la Recherche ScientifiqueUniversité de Strasbourg, Institut des Neurosciences Cellulaires et IntégrativesStrasbourgFrance

Personalised recommendations