Carrier Transport Induced and Controlled by Defects

  • Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Latest version View entry history



With a large density of impurities or other lattice defects, the carrier transport deviates substantially from the classical transport within the band. It is carried within energy ranges (within the bandgap), which are determined by the defect structure. Heavy doping produces predominant defect levels split into two impurity bands. Below a density to permit sufficient tunneling, carrier transport requires excitation into the conduction band; at higher defect density, a diffusive transport within the upper impurity band becomes possible. At further increased defect density, metallic conductivity within the then unsplit impurity band occurs.

In amorphous semiconductors, tunneling-induced carrier transport can take place within the tail of states, which extend from the conduction or valence band into the bandgap. Major carrier transport starts at an energy referred to as the mobility edge. With statistically distributed defects, only some volume elements may become conductive. These volume elements widen at increasing temperature, eventually providing an uninterrupted percolation path through a highly doped or disordered semiconductor with a density-related threshold of conduction.

Conductance in organic semiconductors is governed by static and dynamic disorder. Band conductance in small-molecule crystals shows a decreasing carrier mobility at increased temperature with a power law similar to that of inorganic semiconductors. Small-molecule or polymer semiconductors with dominating static disorder show hopping conductance with a typically low but increasing mobility at higher temperatures.


Amorphous semiconductor Band conductance Dispersive transport Heavy doping Hopping conduction Hopping mobility Impurity band Mobility edge Organic semiconductor Percolation Phonon-activated conduction Tunneling-induced transport Variable-range hopping 


  1. Abrahams E, Anderson PW, Licciardello DC, Ramakrishnan TV (1979) Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys Rev Lett 42:673ADSCrossRefGoogle Scholar
  2. Adler D (1980) Electronic correlations, polarons, and hopping transport. In: Moss TS, Paul W (eds) Handbook on semiconductors, Theory and transport properties, vol 1. North Holland Publishing Company, Amsterdam, pp 805–841Google Scholar
  3. Altshuler BL, Aronov AG, Lee PA (1980) Interaction effects in disordered Fermi systems in two dimensions. Phys Rev Lett 44:1288ADSCrossRefGoogle Scholar
  4. Apsley N, Davis EA, Troup AP, Yoffee AD (1978) Electronic properties of ion-bombarded evaporated germanium and silicon. J Phys C 11:4983ADSCrossRefGoogle Scholar
  5. Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A (2010) Materials and applications for large area electronics: solution-based approaches. Chem Rev 110:3CrossRefGoogle Scholar
  6. Aronov AG, Mirlin DN, Nikitin LP, Reshina II, Sapega VF (1979) Determination of the inter-band transition time in the valence band of gallium arsenide. Sov Phys JETP 29:62Google Scholar
  7. Aronzon BA, Chumakov NK (1994) Quantum effects and the phase diagram of the electronic system of highly compensated semiconductors in magnetic field. Physica B 194–196:1167ADSCrossRefGoogle Scholar
  8. Bässler H (1993) Charge transport in disordered organic photoconductors. Phys Status Solidi B 175:15ADSCrossRefGoogle Scholar
  9. Bässler H, Köhler A (2012) Charge transport in organic semiconductors. Top Curr Chem 312:1Google Scholar
  10. Bloch AN, Carruthers TF, Poehler TO, Cowan DO (1977) The organic metallic state: some physical aspects and chemical trends. In: Keller HJ (ed) Chemistry and physics in one-dimensional metals. Plenum Press, New York, pp 47–85CrossRefGoogle Scholar
  11. Blom PWM, Vissenberg MCJM (2000) Charge transport in poly(p-phenylene vinylene) light-emitting diodes. Mater Sci Eng 27:53CrossRefGoogle Scholar
  12. Blom PWM, de Jong MJM, van Munster MG (1997) Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene). Phys Rev B 55:R656ADSCrossRefGoogle Scholar
  13. Böer KW (1972) Perturbed bands in real semiconducting glasses. J Non-Cryst Sol 8–10:586ADSCrossRefGoogle Scholar
  14. Böttger H, Bryksin VV (1979) Effective medium theory for the hopping conductivity in high electrical fields. Phys Status Solidi B 96:219ADSCrossRefGoogle Scholar
  15. Böttger H, Bryksin VV (1980) Investigation of non-Ohmic hopping conduction by methods of percolation theory. Philos Mag B 42:297ADSCrossRefGoogle Scholar
  16. Böttger H, Bryksin VV (1985) Hopping conduction in solids. VCH-Verlagsgesellschaft, WeinheimGoogle Scholar
  17. Braun CL (1980) Organic semiconductors. In: Moss TS, Keller SP (eds) Handbook on semiconductors, Materials properties and preparation, vol 3. North Holland Publications, Amsterdam, pp 857–873Google Scholar
  18. Broadbent SR, Hammersley JM (1957) Percolation processes I. Crystals and mazes. Proc Camb Philos Soc 53:629ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. Bullot J, Schmidt MP (1987) Physics of amorphous silicon-carbon alloys. Phys Status Solidi B 143:345ADSCrossRefGoogle Scholar
  20. Butcher PN (1972) On the rate equation formulation of the hopping conductivity problem. J Phys C 5:1817ADSCrossRefGoogle Scholar
  21. Cheng YC, Silbey RJ, da Silva Filho DA, Calbert JP, Cornil J, Brédas JL (2003) Three-dimensional band structure and bandlike mobility in oligoacene single crystals: a theoretical investigation. J Chem Phys 118:3764ADSCrossRefGoogle Scholar
  22. Ching WY, Huber DL (1982) Numerical studies of energy levels and eigenfunction localization in dilute three-dimensional systems with exponential interactions. Phys Rev B 25:1096ADSCrossRefGoogle Scholar
  23. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Bredas JL (2007) Charge transport in organic semiconductors. Chem Rev 107:926CrossRefGoogle Scholar
  24. Davidov AS (1962) Theory of molecular excitons. McGraw-Hill, New YorkGoogle Scholar
  25. Donchev V, Shtinkov N, Germanova K (1997) Effect of random defect density fluctuations on the Fermi level in highly compensated semiconductors. Mater Sci Eng B 47:131CrossRefGoogle Scholar
  26. Dresner J (1983) Hall effect and hole transport in B-doped a-Si:H. J Non-Cryst Sol 58:353ADSCrossRefGoogle Scholar
  27. Druger SD (1975) Theory of charge transport processes. In: Birks JB (ed) Organic molecular photophysics, vol 2. Wiley, London, pp 313–394Google Scholar
  28. Efros AL, Shklovskii BI (1975) Coulomb gap and low temperature conductivity of disordered systems. J Phys C 8:L49ADSCrossRefGoogle Scholar
  29. Efros AL, Shklovskii BI, Yanchev IY (1972) Impurity conductivity in low compensated semiconductors. Phys Status Solidi B 50:45ADSCrossRefGoogle Scholar
  30. Elliott SR (1977) A theory of a.c. conduction in chalcogenide glasses. Philos Mag 36:1291ADSCrossRefGoogle Scholar
  31. Elliott SR (1978) Defect states in amorphous silicon. Philos Mag B 38:325ADSCrossRefGoogle Scholar
  32. Emin D (1975) Phonon-assisted transition rates I. Optical-phonon-assisted hopping in solids. Adv Phys 24:305ADSCrossRefGoogle Scholar
  33. Frenkel J (1938) On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys Rev 54:647ADSCrossRefGoogle Scholar
  34. Fritzsche H, Cuevas M (1960) Impurity conduction in transmutation-doped p-type germanium. Phys Rev 119:1238ADSCrossRefGoogle Scholar
  35. Gadzhiev AR, Ryvkin SM, Shlimak IS (1972) Fast-neutron-compensated n-germanium as a model of amorphous semiconductors. Sov Phys JETP 15:428Google Scholar
  36. Gather MC, Köhnen A, Meerholz K (2011) White organic light-emitting diodes. Adv Mater 23:233CrossRefGoogle Scholar
  37. Goodings EP (1976) Conductivity and superconductivity in polymers. Chem Soc Rev 5:95CrossRefGoogle Scholar
  38. Greenwood DA (1958) The Boltzmann equation in the theory of electrical conduction in metals. Proc Phys Soc Lond 71:585ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. Grünewald M, Thomas P, Würtz D (1981) The sign anomaly of the Hall effect in amorphous tetrahedrally bonded semiconductors: a chemical-bond orbital approach. J Phys C 14:4083ADSCrossRefGoogle Scholar
  40. Hacker K, Obermair G (1970) Stark ladders in a one-band-model. Z Phys 234:1ADSCrossRefGoogle Scholar
  41. Haegel NM, Samperi SA, White AM (2003) Electric field and responsivity modeling for far-infrared blocked impurity band detectors. J Appl Phys 93:1305ADSCrossRefGoogle Scholar
  42. Hains AW, Liang Z, Woodhouse MA, Gregg BA (2010) Molecular semiconductors in organic photovoltaic cells. Chem Rev 110:6689CrossRefGoogle Scholar
  43. Halperin BI, Lax M (1966) Impurity-band tails in the high-density limit. I. Minimum counting methods. Phys Rev 148:722ADSCrossRefGoogle Scholar
  44. Hauser JJ (1975) Hopping conductivity in amorphous carbon films. Solid State Commun 17:1577ADSCrossRefGoogle Scholar
  45. Heeger AJ (1981) Semiconducting and metallic polymers: new science with potential for new technology. Comments Sol State Phys 10:53Google Scholar
  46. Heeger AJ, MacDairmid AG (1980) Conducting organic polymers: doped polyacetylene. In: Alcàcer L (ed) The physics and chemistry of low-dimensional solids. Reidel, Dordrecht, pp 353–391Google Scholar
  47. Holstein T (1959) Polaron band narrowing. Ann Phys 8:325. ibid 8:343ADSzbMATHCrossRefGoogle Scholar
  48. Horring NJ (1969) Quantum theory of static shielding of an impurity charge by an electron gas plasma in a magnetic field. Ann Phys 54:405ADSCrossRefGoogle Scholar
  49. Hubbard J (1963) Electron correlations in narrow energy bands. Proc R Soc Lond A 276:238ADSCrossRefGoogle Scholar
  50. Huckestein B, Schweitzer L (1993) Multifractality and anomalous diffusion at the mobility edge in disordered systems. J Non-Cryst Sol 164:461CrossRefGoogle Scholar
  51. Hung LS, Chen CH (2002) Recent progress of molecular organic electroluminescent materials and devices. Mater Sci Eng 39:143CrossRefGoogle Scholar
  52. Ioffe AF, Regel AR (1960) Non-crystalline, amorphous and liquid electronic semiconductors. Prog Semicond 4:237Google Scholar
  53. Kane EO (1963) Thomas-Fermi approach to impure semiconductor band structure. Phys Rev 131:79ADSzbMATHCrossRefGoogle Scholar
  54. Karl N (1984) Organic semiconductors. Landoldt-Börnstein/Springer, HeidelbergGoogle Scholar
  55. Karl N (2001) Charge-carrier mobility in organic crystals. In: Farchioni R, Grosso G (eds) Organic electronic materials: conjugated polymers and low molecular weight organic solids. Springer, Berlin, pp 283–326CrossRefGoogle Scholar
  56. Keller HJ (ed) (1977) Chemistry and physics in one-dimensional metals. Plenum Press, New YorkGoogle Scholar
  57. Kivelson S (1982) Electron hopping in a soliton band: conduction in lightly doped (CH)x. Phys Rev B 25:3798ADSCrossRefGoogle Scholar
  58. Kivelson S, Chapman OL (1983) Polyacene and a new class of quasi-one-dimensional conductors. Phys Rev B 28:7236ADSCrossRefGoogle Scholar
  59. Knotek ML, Pollak M, Donovan TM, Kurtzman H (1973) Thickness dependence of hopping transport in amorphous-Ge films. Phys Rev Lett 30:853Google Scholar
  60. Knotek ML, Pollak M (1974) Correlation effects in hopping conduction: a treatment in terms of multielectron transitions. Phys Rev B 9:664ADSCrossRefGoogle Scholar
  61. Krivoglaz MA (1974) Fluctuon states of electrons. Sov Phys Usp (Engl Transl) 16:856ADSCrossRefGoogle Scholar
  62. Kubo R (1956) A general expression for the conductivity tensor. Can J Phys 34:1274ADSMathSciNetCrossRefGoogle Scholar
  63. Kubo R (1957) Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J Phys Soc Jpn 12:570ADSMathSciNetCrossRefGoogle Scholar
  64. Kuroda H, Kobayashi M, Kinoshita M, Takemoto S (1962) Semiconductive properties of tetracyanoethylene complexes and their absorption spectra. J Chem Phys 36:457ADSCrossRefGoogle Scholar
  65. LeComber PG, Madan A, Spear WE (1972) Electronic transport and state distribution in amorphous Si films. J Non-Cryst Sol 11:219ADSCrossRefGoogle Scholar
  66. Lifshitz IM (1965) Energy spectrum structure and quantum states of disordered condensed systems. Sov Phys Usp (Engl Transl) 7:549ADSMathSciNetCrossRefGoogle Scholar
  67. Maekawa S (1970) Nonlinear conduction of ZnS in strong electric fields. Phys Rev Lett 24:1175ADSCrossRefGoogle Scholar
  68. Marchetti AP, Kearns DR (1970) Photoelectron emission from aromatic and metalloorganic hydrocarbons. Mol Cryst Liq Cryst 6:299Google Scholar
  69. Mazuruk K, Benzaquen M, Walsh D (1989) Coulomb gap and screening in impurity bands. Solid State Commun 69:337ADSCrossRefGoogle Scholar
  70. McInnes JA, Butcher PN (1979) Numerical calculations of dc hopping conductivity. Philos Mag B 39:1ADSCrossRefGoogle Scholar
  71. Miller A, Abrahams E (1960) Impurity conduction at low concentrations. Phys Rev 120:745ADSzbMATHCrossRefGoogle Scholar
  72. Mott NF (1968) Conduction in glasses containing transition metal ions. J Non-Cryst Sol 1:1ADSCrossRefGoogle Scholar
  73. Mott NF (1969) Conduction in non-crystalline materials. Philos Mag 19:835ADSCrossRefGoogle Scholar
  74. Mott NF (1991) The sign of the Hall effect in amorphous silicon. Philos Mag B 63:3ADSCrossRefGoogle Scholar
  75. Mott NF (1993) Conduction in non-crystalline materials, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  76. Mott NF, Davis EA (1979) Electronic processes in noncrystalline materials. Claredon Press, Oxford, UKGoogle Scholar
  77. Mott NF, Kaveh M (1985) Metal-insulator transitions in non-crystalline systems. Adv Phys 34:329ADSCrossRefGoogle Scholar
  78. Mulliken RS (1952) A comparative survey of approximate ground state wave functions of helium atom and hydrogen molecule. Proc Nat Akad Sci 38:160ADSzbMATHCrossRefGoogle Scholar
  79. Noriega R, Salleo A (2012) Charge transport theories in organic semiconductors. In: Klauk H (ed) Organic electronics II. Wiley-VCH, Weinheim, pp 67–104CrossRefGoogle Scholar
  80. Okamoto H, Hattori K, Hamakawa Y (1993) Hall effect near the mobility edge. J Non-Cryst Sol 164–166:445CrossRefGoogle Scholar
  81. Overhof H, Beyer W (1981) A model for the electronic transport in hydrogenated amorphous silicon. Philos Mag B 43:433ADSCrossRefGoogle Scholar
  82. Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693ADSCrossRefGoogle Scholar
  83. Pollak M (1972) A percolation treatment of dc hopping conduction. J Non-Cryst Solids 11:1ADSCrossRefGoogle Scholar
  84. Pope M, Swenberg CE (1982) Electronic processes in organic crystals. Oxford University Press, OxfordGoogle Scholar
  85. Priour DJ Jr (2012) Electronic states in one-, two-, and three-dimensional highly amorphous materials: a tight-binding treatment. Phys Rev B 85:014209ADSCrossRefGoogle Scholar
  86. Pronin KA, Bandrauk AD, Ovchinnikov AA (1994) Electric-field-induced localization and non-perturbative response of a one-dimensional conductor. J Phys Condens Matter 6:4721ADSCrossRefGoogle Scholar
  87. Rosenbaum TF, Andres K, Thomas GA, Bhatt RN (1980) Sharp metal-insulator transition in a random solid. Phys Rev Lett 45:1723ADSCrossRefGoogle Scholar
  88. Ryvkin SM, Shlimak IS (1973) A doped highly compensated crystal semiconductor as a model of amorphous semiconductors. Phys Status Solidi A 16:515ADSCrossRefGoogle Scholar
  89. Schein LB (1977) Temperature independent drift mobility along the molecular direction of As2S3. Phys Rev B 15:1024ADSCrossRefGoogle Scholar
  90. Schlenker C, Marezio M (1980) The order–disorder transition of Ti3+–Ti3+ pairs in Ti4O7 and (Ti1-xVx)4O7. Philos Mag B 42:453ADSCrossRefGoogle Scholar
  91. Schnakenberg J (1968) Polaronic impurity hopping conduction. Phys Status Solidi B 28:623ADSCrossRefGoogle Scholar
  92. Shante VKS, Kirkpatrick S (1971) An introduction to percolation theory. Adv Phys 20:325ADSCrossRefGoogle Scholar
  93. Shi Q, Hou Y, Lu J, Jin H, Yunbai L, Yan L, Sun X, Liu J (2006) Enhancement of carrier mobility in MEH-PPV film prepared under presence of electric field. Chem Phys Lett 425:353ADSCrossRefGoogle Scholar
  94. Shin D-H, Becker CE, Harris JJ, Fernández JM, Woods NJ, Thornton TJ, Maude DK, Portal J-C (1999) Variable-range hopping transport in modulation-doped n-channel Si/Si1-xGex quantum well structures. Semicond Sci Technol 14:762ADSCrossRefGoogle Scholar
  95. Shklovskii BI, Efros AL (1984) Electronic properties of doped semiconductors. Springer, BerlinCrossRefGoogle Scholar
  96. Sirringhaus H, Tessler N, Friend RH (1998) Integrated optoelectronic devices based on conjugated polymers. Science 280:1741ADSCrossRefGoogle Scholar
  97. Soos ZG (1974) Theory of π-molecular charge-transfer crystals. Annu Rev Phys Chem 25:121ADSCrossRefGoogle Scholar
  98. Spear WE (1974) Electronic transport and localization in low mobility solids and liquids. Adv Phys 23:523ADSCrossRefGoogle Scholar
  99. Thouless DJ (1974) Electrons in disordered systems and the theory of localization. Phys Rep 13:93ADSCrossRefGoogle Scholar
  100. Thouless DJ (1980) Resistance and localization in thin films and wires. J Non-Cryst Sol 35:3ADSCrossRefGoogle Scholar
  101. Tiedje T (1984) Information about band-tail states from time-of-flight experiments. In: Willardson RK, Beer AC, Ji P (eds) Semiconductors and semimetals, vol 21C. Academic, New York, pp 207–238Google Scholar
  102. Wang X, Wang B, Hou L, Xie W, Chen X, Pan M (2015) Design consideration of GaAs-based blocked-impurity-band detector with the absorbing layer formed by ion implantation. Opt Quant Electron 47:1347CrossRefGoogle Scholar
  103. Wannier GH (1960) Wave functions and effective hamiltonian for Bloch electrons in an electric field. Phys Rev 117:432ADSMathSciNetzbMATHCrossRefGoogle Scholar
  104. Warta W, Stehle R, Karl N (1985) Ultrapure, high mobility organic photoconductors. Appl Phys A Mater Sci Process 36:163ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2020

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations