Advertisement

Polycrystal Plasticity Models Based on Green’s Functions: Mean-Field Self-Consistent and Full-Field Fast Fourier Transform Formulations

  • Ricardo A. LebensohnEmail author
Reference work entry
  • 26 Downloads

Abstract

In this chapter, we review two crystal plasticity methodologies based on Green’s functions for the prediction of microstructure-property relations in polycrystalline aggregates. The first, known as the viscoplastic self-consistent (VPSC) formulation, is a mean-field theory. The second, known as the viscoplastic fast Fourier transform-based (VPFFT) formulation, is a full-field method. The assumptions and main equations of these Green’s function-based crystal plasticity formulations are presented using a unified notation, pointing out their similarities and differences and cross-validating their predictions.

Notes

Acknowledgments

This chapter contains results of the author’s collaboration with C.N. Tomé, P. Ponte Castañeda, R. Brenner, O. Castelnau, P. Gilormini, M. Zecevic, M. Knezevic, and R.J. McCabe. Parts of this work were supported by Los Alamos National Laboratory’s Laboratory-Directed Research and Development (LDRD) program, project 20180441ER.

References

  1. Barbe F, Decker L, Jeulin D, Cailletaud G (2001) Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: F.E. model. Int J Plast 17:513–536zbMATHCrossRefGoogle Scholar
  2. Barton NR, Bernier JV, Lebensohn RA, Boyce DE (2015) The use of discrete harmonics in direct multi-scale embedding of polycrystal plasticity. Comput Methods Appl Mech Eng 283:224–242ADSCrossRefGoogle Scholar
  3. Becker R (1991) Analysis of texture evolution in channel die compression. 1. Effects of grain interaction. Acta Metall Mater 39:1211–1230CrossRefGoogle Scholar
  4. Berbenni S, Taupin V, Djaka KS, Fressengeas C (2014) A numerical spectral approach for solving elasto-static field dislocation and g-disclination mechanics. Int J Solids Struct 51:4157–4175CrossRefGoogle Scholar
  5. Berveiller M, Fassi-Fehri O, Hihi A (1987) The problem of 2 plastic and heterogeneous inclusions in an anisotropic medium. Int J Eng Sci 25:691–709zbMATHCrossRefGoogle Scholar
  6. Beyerlein IJ, Tomé CN (2008) A dislocation-based constitutive law for pure Zr including temperature effects. Int J Plast 24:867–895zbMATHCrossRefGoogle Scholar
  7. Bobeth M, Diener G (1987) Static elastic and thermoelastic field fluctuations in multiphase composites. J Mech Phys Solids 35:137–149ADSzbMATHCrossRefGoogle Scholar
  8. Brenner R, Lebensohn RA, Castelnau O (2009) Elastic anisotropy and yield surface estimates of polycrystals. Int J Solids Struct 46:3018–3026zbMATHCrossRefGoogle Scholar
  9. Brenner R, Beaudoin AJ, Suquet P, Acharya A (2014) Numerical implementation of static Field Dislocation Mechanics theory for periodic media. Phil Mag A 94:1764–1787CrossRefGoogle Scholar
  10. Brisard S, Dormieux L (2010) FFT-based methods for the mechanics of composites: a general variational framework. Comput Mater Sci 49:663–671CrossRefGoogle Scholar
  11. Cheng J, Ghosh S (2015) A crystal plasticity FE model for deformation with twin nucleation in magnesium alloys. Int J Plast 67:148–170CrossRefGoogle Scholar
  12. Cruzado A, Gan B, Jimenez M, Barba D, Ostolaza K, Linaza A, Molina-Aldareguia JM, LLorca J, Segurado J (2015) Multiscale modeling of the mechanical behavior of IN718 superalloy based on micropillar compression and computational homogenization. Acta Mater 98:242–253CrossRefGoogle Scholar
  13. Delaire F, Raphanel JL, Rey C (2001) Plastic heterogeneities of a copper multicrystal deformed in uniaxial tension: experimental study and finite element simulations. Acta Mater 48:1075CrossRefGoogle Scholar
  14. Delannay L, Jacques PJ, Kalidindi SR (2006) Finite element modeling of crystal plasticity with grains shaped as truncated octahedrons. Int J Plast 22:1879–1898zbMATHCrossRefGoogle Scholar
  15. Dykhne AM (1970) Conductivity of a two-dimensional two-phase system. Dokl Akad Nauk SSSR 59:110–115Google Scholar
  16. Eisenlohr P, Diehl M, Lebensohn RA, Roters F (2013) A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int J Plast 46:37–53CrossRefGoogle Scholar
  17. Eyre DJ, Milton GW (1999) A fast numerical scheme for computing the response of composites using grid refinement. Eur Phys J Appl Phys 6:41–47ADSCrossRefGoogle Scholar
  18. Grennerat F, Montagnat M, Castelnau O, Vacher P, Moulinec H, Suquet P, Duval P (2012) Experimental characterization of the intragranular strain field in columnar ice during transient creep. Acta Mater 60:3655–3666CrossRefGoogle Scholar
  19. Hershey AV (1954) The elasticity of an isotropic aggregate of anisotropic cubic crystals. J Appl Mech 21:236–240zbMATHGoogle Scholar
  20. Hill R (1965) Continuum micro-mechanics of elastoplastic polycrystals. J Mech Phys Solids 13:89ADSzbMATHCrossRefGoogle Scholar
  21. Hutchinson JW (1976) Bounds and self-consistent estimates for creep of polycrystalline materials. Proc R Soc Lond A 348:101–127ADSzbMATHCrossRefGoogle Scholar
  22. Idiart MI, Moulinec H, Ponte Castaneda P, Suquet P (2006) Macroscopic behavior and field fluctuations in viscoplastic composites: second-order estimates versus full-field simulations. J Mech Phys Solids 54:1029–1063ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. Knezevic M, Lebensohn RA, Cazacu O, Revil-Baudard B, Proust G, Vogel S, Nixon ME (2013) Modeling bending of alpha-titanium with embedded polycrystal plasticity in implicit finite elements. Mat Sci Eng A 564:116–126CrossRefGoogle Scholar
  24. Kreher W (1990) Residual-stresses and stored elastic energy of composites and polycrystals. J Mech Phys Solids 38:115–128ADSzbMATHCrossRefGoogle Scholar
  25. Laws N (1973) On the thermostatics of composite materials. J Mech Phys Solids 21:9–17ADSCrossRefGoogle Scholar
  26. Lebensohn RA (2001) N-site modelling of a 3D viscoplastic polycrystal using Fast Fourier Transform. Acta Mater 49:2723–2737CrossRefGoogle Scholar
  27. Lebensohn RA, Canova GR (1997) A selfconsistent approach for modelling texture development of two-phase polycrystals: application to Titanium alloys. Acta Mater 45:3687–3694CrossRefGoogle Scholar
  28. Lebensohn RA, Needleman A (2016) Numerical implementation of non-local polycrystal plasticity using Fast Fourier Transforms. J Mech Phys Solids 97:333–351ADSMathSciNetCrossRefGoogle Scholar
  29. Lebensohn RA, Tomé CN (1993) A selfconsistent approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall Mater 41:2611–2624CrossRefGoogle Scholar
  30. Lebensohn R, Uhlenhut H, Hartig C, Mecking H (1998) Mechanical behavior γ-TiAl-based polysinthetically twinned crystals: micromechanical modelling and experimental validation. Acta Mater 46:4701–4709CrossRefGoogle Scholar
  31. Lebensohn RA, Castelnau O, Brenner R, Gilormini P (2005) Study of the antiplane deformation of linear 2-D polycrystals with different microstructures. Int J Solids Struct 42:5441–5449zbMATHCrossRefGoogle Scholar
  32. Lebensohn RA, Tomé CN, Ponte Castañeda P (2007) Self-consistent modeling of the mechanical behavior of viscoplastic polycrystals incorporating intragranular field fluctuations. Philos Mag 87:4287–4322ADSCrossRefGoogle Scholar
  33. Lebensohn RA, Brenner R, Castelnau O, Rollett AD (2008) Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper. Acta Mater 56:3914–3926CrossRefGoogle Scholar
  34. Lebensohn RA, Idiart MI, Ponte Castañeda P, Vincent PG (2011) Dilatational viscoplasticity of polycrystalline solids with intergranular cavities. Philos Mag 91:3038–2067ADSCrossRefGoogle Scholar
  35. Lebensohn RA, Kanjarla AK, Eisenlohr P (2012) An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int J Plast 32&33:59–69CrossRefGoogle Scholar
  36. Lebensohn RA, Escobedo JP, Cerreta EK, Dennis-Koller D, Bronkhorst CA, Bingert J (2013) Modelling void growth in polycrystalline materials. Acta Mater 61:6918–6932CrossRefGoogle Scholar
  37. Lebensohn RA, Zecevic M, Knezevic M, McCabe RJ (2016) Average intragranular misorientation trends in polycrystalline materials predicted by a viscoplastic self-consistent approach. Acta Mater 104:228–236CrossRefGoogle Scholar
  38. Liu Y, Ponte Castañeda P (2004) Second-order theory for the effective behavior and field fluctuations in viscoplastic polycrystals. J Mech Phys Solids 52:467–495ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. Masson R, Bornert M, Suquet P, Zaoui A (2000) Affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals. J Mech Phys Solids 48:1203ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. Michel JC, Moulinec H, Suquet P (2000) A computational method based on augmented Lagrangians and fast Fourier transforms for composites with high contrast. Comput Model Eng Sci 1:79–88MathSciNetGoogle Scholar
  41. Mika DP, Dawson PR (1998) Effects of grain interaction on deformation in polycrystals. Mater Sci Eng A 257:62–76CrossRefGoogle Scholar
  42. Molinari A, Canova GR, Ahzi S (1987) Self consistent approach of the large deformation polycrystal viscoplasticity. Acta Metall 35:2983–2994CrossRefGoogle Scholar
  43. Moulinec H, Suquet P (1994) A fast numerical method for computing the linear and nonlinear mechanical properties of composites. C R Acad Sci Paris II 318:1417–1423zbMATHGoogle Scholar
  44. Moulinec H, Suquet P (1998) Numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157:69–94ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. Mura T (1987) Micromechanics of defects in solids. Martinus-Nijhoff Publishers, DordrechtzbMATHCrossRefGoogle Scholar
  46. Musienko A, Tatschl A, Schmidegg K, Kolednik O, Pippan R, Cailletaud G (2007) Three-dimensional finite element simulation of a polycrystalline copper specimen. Acta Mater 55:4121–4136CrossRefGoogle Scholar
  47. Nixon ME, Cazacu O, Lebensohn RA (2010) Anisotropic response of high-purity α-titanium. Experimental characterization and constitutive modelling. Int J Plast 26:516–532zbMATHCrossRefGoogle Scholar
  48. Parton VZ, Buryachenko VA (1990) Stress fluctuations in elastic composites. Sov Phys Dokl 35(2):191–193ADSMathSciNetzbMATHGoogle Scholar
  49. Plunkett B, Lebensohn RA, Cazacu O, Barlat F (2006) Evolving yield function of hexagonal materials taking into account texture development and anisotropic hardening. Acta Mater 54:4159–4169CrossRefGoogle Scholar
  50. Ponte Castañeda P (2002) Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I- theory. J Mech Phys Solids 50:737–757ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. Proust G, Tomé CN, Kaschner GC (2007) Modeling texture, twinning and hardening evolution during deformation of hexagonal materials. Acta Mater 55:2137–2148CrossRefGoogle Scholar
  52. Quey R, Driver JH, Dawson P (2015) Intra-grain orientation distributions in hot-deformed aluminium: orientation dependence and relation to deformation mechanisms. J Mech Phys Solids 84:506–527ADSCrossRefGoogle Scholar
  53. Raabe D, Sachtleber M, Zhao Z, Roters F, Zaefferer S (2001) Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation. Acta Mater 49:3433–3441CrossRefGoogle Scholar
  54. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58:1152–1211CrossRefGoogle Scholar
  55. Sachs G (1928) On the derivation of a condition of flowing. Z Verein Deut Ing 72:734–736Google Scholar
  56. Segurado J, Lebensohn RA, LLorca J, Tomé CN (2012) Multiscale modeling of plasticity based on embedding the viscoplastic self-consistent formulation in implicit finite elements. Int J Plast 28:124–140CrossRefGoogle Scholar
  57. Taylor GI (1938) Plastic strain in metals. J Inst Met 62:307–324Google Scholar
  58. Tomé CN, Maudlin PJ, Lebensohn RA, Kaschner GC (2001) Mechanical response of zirconium. Part I: derivation of a polycrystal constitutive law and finite element analysis. Acta Mater 49:3085–3096CrossRefGoogle Scholar
  59. Wen W, Borodachenkova M, Tomé CN, Vincze G, Rauch EF, Barlat F, Gracio JJ (2016) Mechanical behavior of Mg subjected to strain path changes: experiments and modeling. Int J Plast 73:171–183CrossRefGoogle Scholar
  60. Wenk HR, Canova GR, Brechet Y, Flandin (1997) A deformation-based model for recrystallization of anisotropic materials. Acta Mater 45:3283CrossRefGoogle Scholar
  61. Willot F (2015) Fourier-based schemes for computing the mechanical response of composites with accurate local fields. CR Mécanique 34:232–245MathSciNetCrossRefGoogle Scholar
  62. Zecevic M, Pantleon W, Lebensohn RA, McCabe RJ, Knezevic M (2017) Predicting intragranular misorientation distributions in polycrystalline metals using the viscoplastic self-consistent formulation. Acta Mater 140:398–410CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Fluid Dynamics and Solid Mechanics, T-3 Group, Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA

Section editors and affiliations

  • Wei Cai
    • 1
  • Somnath Ghosh
    • 2
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Dept. of Mechanical EngineeringJohns Hopkins UniveristyBaltimoreUSA

Personalised recommendations