Introduction to Precision Machines

  • Shuming YangEmail author
  • Guofeng Zhang
  • Changsheng Li
  • Zhuangde Jiang
Reference work entry
Part of the Precision Manufacturing book series (PRECISION)


Ultra-precision machining is an advanced technology used to generate parts with high accuracy, low surface roughness and surface/subsurface damage to meet the requirements of astronomy, semiconductor technology, consumer electronics, etc. The application in some representative fields was described to clarify the concrete requirements for ultra-precision machining. The state of the art of three widely used ultra-precision machining processes including ultra-precision cutting, ultra-precision grinding and finishing/figuring is discussed.


Precision machines Manufacturing Measurement 


  1. Anderson DS et al (1992) Stressed-lap polishing of 3.5-mf/1.5 and 1.8-mf/1.0 mirrors. In: 8th international symposium on gas flow and chemical lasers, international society for optics and photonics, San DiegoGoogle Scholar
  2. Ando M et al (1992) Super-smooth surface polishing on aspherical optics. Proc. SPIE 1720, Intl Symp on Optical Fabrication, Testing, and Surface Evaluation.
  3. Ando M et al (1995) Super-smooth polishing on aspherical surfaces. Nanotechnology 6(4):111ADSCrossRefGoogle Scholar
  4. Arnold T et al (2010) Plasma jet machining. Vakuum Forsch Prax 22(4):10–16CrossRefGoogle Scholar
  5. Beaucamp A, Namba Y (2013) Super-smooth finishing of diamond turned hard X-ray molding dies by combined fluid jet and bonnet polishing. CIRP Ann Manuf Technol 62(1):315–318CrossRefGoogle Scholar
  6. Beaucamp A et al (2014) Shape adaptive grinding of CVD silicon carbide. CIRP Ann Manuf Technol 63(1):317–320CrossRefGoogle Scholar
  7. Beaucamp A et al (2015) Process mechanism in shape adaptive grinding (SAG). CIRP Ann Manuf Technol 64(1):305–308CrossRefGoogle Scholar
  8. Bollinger LD et al (1992) Rapid optical figuring of aspherical surfaces with plasma-assisted chemical etching. In: Optics Rochester: SPIE’s International Symposium on Imaging, Fabrication, and Competitiveness, 1991, Rochester, NY. Proc. SPIE 1618, Large Optics II.
  9. Brinksmeier E, Preuss W (2012) Micro-machining. Phil Trans R Soc A 370(1973):3973–3992ADSCrossRefGoogle Scholar
  10. Brinksmeier E et al (2010) Ultra-precision grinding. CIRP Ann Manuf Technol 59(2):652–671CrossRefGoogle Scholar
  11. Brinksmeier E et al (2012) Review on diamond-machining processes for the generation of functional surface structures. CIRP J Manuf Sci Technol 5(1):1–7CrossRefGoogle Scholar
  12. Bryan JB (1979) Design and construction of an ultraprecision 84 inch diamond turning machine. Precis Eng 1(1):13–17CrossRefGoogle Scholar
  13. Byrne G et al (2003) Advancing cutting technology. CIRP Ann Manuf Technol 52(2):483–507CrossRefGoogle Scholar
  14. Carlisle K (2009) Large optics diamond turning machine (LODTM). Lawrence Livermore National Laboratory (LLNL), LivermoreGoogle Scholar
  15. Comley P et al (2011) Grinding metre scale mirror segments for the E-ELT ground based telescope. CIRP Ann Manuf Technol 60(1):379–382CrossRefGoogle Scholar
  16. Eda H et al (2001) Development of single step grinding system for large scale ϕ300 Si wafer: a total integrated fixed-abrasive solution. CIRP Ann Manuf Technol 50(1):225–228CrossRefGoogle Scholar
  17. Fähnle OW, van Brug HH (1999) Fluid jet polishing: removal process analysis. In: Optical Systems Design and Production, 1999, Berlin. Proc. SPIE 3739, Optical Fabrication and Testing.
  18. Fanara C et al (2006) A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE® surfaces. Adv Eng Mater 8(10):933–939CrossRefGoogle Scholar
  19. Flucke C et al (2008) Diamond micro chiselling of molding inserts for optical micro structures. In: Proceedings of the 23th ASPE annual meeting and 12th ICPE, PortlandGoogle Scholar
  20. Frost F et al (1998) Ion beam smoothing of indium-containing III-V compound semiconductors. Appl Phys A 66(6):663–668ADSCrossRefGoogle Scholar
  21. Frost F et al (2004) Ion beam assisted smoothing of optical surfaces. Appl Phys A 78(5):651–654ADSCrossRefGoogle Scholar
  22. Jain V (2009) Magnetic field assisted abrasive based micro-/nano-finishing. J Mater Process Technol 209(20):6022–6038CrossRefGoogle Scholar
  23. Jiang M, Komanduri R (1997) Application of Taguchi method for optimization of finishing conditions in magnetic float polishing (MFP). Wear 213(1):59–71CrossRefGoogle Scholar
  24. Jourdain R et al (2013) Reactive atom plasma (RAP) figuring machine for meter class optical surfaces. Prod Eng 7(6):665–673CrossRefGoogle Scholar
  25. Kawasegi N et al (2014) Improving machining performance of single-crystal diamond tools irradiated by a focused ion beam. Precis Eng 38(1):174–182CrossRefGoogle Scholar
  26. Lubliner J, Nelson JE (1980) Stressed mirror polishing. 1: a technique for producing nonaxisymmetric mirrors. Appl Opt 19(14):2332–2340ADSCrossRefGoogle Scholar
  27. McKeown PA et al (1990) Ultraprecision, high stiffness CNC grinding machines for ductile mode grinding of brittle materials. In: Eighth International Conference Infrared Technology and Applications, 1990, London. Proc. SPIE 1320, Infrared Technology and Applications.
  28. Mori Y et al (1988) Mechanism of atomic removal in elastic emission machining. Precis Eng 10(1):24–28CrossRefGoogle Scholar
  29. Mori Y et al (2001) Development of plasma chemical vaporization machining and elastic emission machining systems for coherent X-ray optics. In: International Symposium on Optical Science and Technology, 2001, San Diego. Proc. SPIE 4501, X-Ray Mirrors, Crystals, and Multilayers.
  30. Moriya T et al (2010) Creation of V-shaped microgrooves with flat-ends by 6-axis control ultraprecision machining. CIRP Ann Manuf Technol 59(1):61–66CrossRefGoogle Scholar
  31. Negishi M et al (1995) A high-precision coordinate measuring system for super-smooth polishing. Nanotechnology 6(4):139ADSCrossRefGoogle Scholar
  32. Nelson JE et al (1980) Stressed mirror polishing. 2: fabrication of an off-axis section of a paraboloid. Appl Opt 19(14):2341–2352ADSCrossRefGoogle Scholar
  33. Ohmori H, Nakagawa T (1995) Analysis of mirror surface generation of hard and brittle materials by ELID (electronic in-process dressing) grinding with superfine grain metallic bond wheels. CIRP Ann Manuf Technol 44(1):287–290CrossRefGoogle Scholar
  34. Picard YN et al (2003) Focused ion beam-shaped microtools for ultra-precision machining of cylindrical components. Precis Eng 27(1):59–69CrossRefGoogle Scholar
  35. Saito T et al (2007) Fabrication of high-quality surfaces on precise lens mold materials by a new ELID grinding wheel. In Towards Synthesis of Micro-/Nano-systems. Springer, London, pp. 315–318.
  36. Schindler A et al (2002) Ion beam finishing technology for high precision optics production. In: Sawchuk A (ed) Optical fabrication and testing, vol. 76 of OSA Trends in Optics and Photonics Series, p. OTuB5.Google Scholar
  37. Shibata T et al (1996) Ductile-regime turning mechanism of single-crystal silicon. Precis Eng 18(2):129–137CrossRefGoogle Scholar
  38. Shinno H et al (1999) Nanometer positioning of a linear motor-driven ultraprecision aerostatic table system with electrorheological fluid dampers. CIRP Ann Manuf Technol 48(1):289–292CrossRefGoogle Scholar
  39. Subrahmanyan P et al (2007) Rapid fabrication of lightweight SiC aspheres using reactive atom plasma (RAP) processing. Proc. SPIE 6666, Optical Materials and Structures Technologies III, 66660A.
  40. Suzuki H et al (2013) Development of micro milling tool made of single crystalline diamond for ceramic cutting. CIRP Ann Manuf Technol 62(1):59–62CrossRefGoogle Scholar
  41. Takeuchi Y et al (2003) Creation of flat-end V-shaped microgrooves by non-rotational cutting tools. CIRP Ann Manuf Technol 52(1):41–44CrossRefGoogle Scholar
  42. Takino H et al (1998) Computer numerically controlled plasma chemical vaporization machining with a pipe electrode for optical fabrication. Appl Opt 37(22):5198–5210ADSCrossRefGoogle Scholar
  43. Toyoda N et al (2002) Ultra-smooth surface preparation using gas cluster ion beams. Jpn J Appl Phys 41(6S):4287ADSCrossRefGoogle Scholar
  44. Umehara N et al (2006) A new apparatus for finishing large size/large batch silicon nitride (Si3N4) balls for hybrid bearing applications by magnetic float polishing (MFP). Int J Mach Tools Manuf 46(2):151–169CrossRefGoogle Scholar
  45. Walker DD et al (2006) Use of the ‘Precessions’™ process for prepolishing and correcting 2D & 2½D form. Opt Express 14(24):11787–11795ADSCrossRefGoogle Scholar
  46. Walker D et al (2012) Edges in CNC polishing: from mirror-segments towards semiconductors, paper 1: edges on processing the global surface. Opt Express 20(18):19787–19798ADSCrossRefGoogle Scholar
  47. Yamamura K et al (2003) Fabrication of elliptical mirror at nanometer-level accuracy for hard x-ray focusing by numerically controlled plasma chemical vaporization machining. Rev Sci Instrum 74(10):4549–4553ADSMathSciNetCrossRefGoogle Scholar
  48. Yamauchi K et al (2002) Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining. Rev Sci Instrum 73(11):4028–4033ADSCrossRefGoogle Scholar
  49. Zhao Q, Guo B (2015) Ultra-precision grinding of optical glasses using mono-layer nickel electroplated coarse-grained diamond wheels. Part 2: investigation of profile and surface grinding. Precis Eng 39:67–78CrossRefGoogle Scholar
  50. Zhao Q et al (2007) Surface and subsurface integrity in diamond grinding of optical glasses on Tetraform ‘C’. Int J Mach Tools Manuf 47(14):2091–2097CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Shuming Yang
    • 1
    Email author
  • Guofeng Zhang
    • 2
  • Changsheng Li
    • 1
  • Zhuangde Jiang
    • 1
  1. 1.State Key Laboratory for Manufacturing Systems EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations