Genetics of Pediatric Tumors

  • Jennifer Lynch
  • Raymond L. StallingsEmail author
Living reference work entry


Cancer is a disease that arises from the accumulation of multiple genetic aberrations within the genome. In the case of pediatric cancer, these alterations often result in a less differentiated or more pluripotent state. The extracranial solid tumor neuroblastoma is one of the most heterogeneous pediatric neoplasms. Several genetic alterations such as MYCN amplification, DNA ploidy, and allelic loss of chromosomes 1p and 11q serve as powerful prognostic factors for the stratification of different subtypes of neuroblastoma. Recently, advances in high-throughput screening methods have revealed an additional source of powerful genetic indicators for disease stratification, the non-coding RNA genome. The most widely studied non-coding RNAs to date are miRNAs, and this chapter provides an insight into the clinical application of miRNA profiling and their future potential as a novel means of targeted therapeutic intervention.


Neuroblastoma MicroRNA (miRNA) MYCN Risk stratification Targeted therapy 


  1. Barembaum M, Bronner-Fraser M. Early steps in neural crest specification. Semin Cell Dev Biol. 2005;16:642–6.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bernards R. N-myc disrupts protein kinase C-mediated signal transduction in neuroblastoma. EMBO J. 1991;10:1119–25.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bown N, Cotterill S, Lastowska M, O’Neill S, Pearson AD, Plantaz D, et al. Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N Engl J Med. 1999;340:1954–61.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bray I, Bryan K, Prenter S, Buckley PG, Foley NH, Murphy DM, et al. Widespread dysregulation of MiRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival. PLoS One. 2009;4:e7850.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bray I, Tivnan A, Bryan K, Foley NH, Watters KM, Tracey L, et al. MicroRNA-542-5p as a novel tumor suppressor in neuroblastoma. Cancer Lett. 2011;303:56–64.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer. 2003;3:203–16.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984;224:1121–4.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Buckley PG, Alcock L, Bryan K, Bray I, Schulte JH, Schramm A, et al. Chromosomal and microRNA expression patterns reveal biologically distinct subgroups of 11q- neuroblastoma. Clin Cancer Res. 2010;16:2971–8.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Castleberry RP, Pritchard J, Ambros P, Berthold F, Brodeur GM, Castel V, et al. The International Neuroblastoma Risk Groups (INRG): a preliminary report. Eur J Cancer. 1997;33:2113–6.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2:563–72.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chen Y, Stallings RL. Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res. 2007;67:976–83.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102:13944–9.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Creevey L, Ryan J, Harvey H, Bray IM, Meehan M, Khan AR, et al. MicroRNA-497 increases apoptosis in MYCN amplified neuroblastoma cells by targeting the key cell cycle regulator WEE1. Mol Cancer. 2013;12:23.PubMedPubMedCentralCrossRefGoogle Scholar
  16. DuBois SG, Kalika Y, Lukens JN, Brodeur GM, Seeger RC, Atkinson JB, et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol. 1999;21:181–9.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Foley NH, Bray IM, Tivnan A, Bryan K, Murphy DM, Buckley PG, et al. MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2. Mol Cancer. 2010;9:83.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Foley NH, Bray I, Watters KM, Das S, Bryan K, Bernas T, et al. MicroRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell Death Differ. 2011;18:1089–98.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Gammill LS, Bronner-Fraser M. Neural crest specification: migrating into genomics. Nat Rev Neurosci. 2003;4:795–805.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Giannini G, Cerignoli F, Mellone M, Massimi I, Ambrosi C, Rinaldi C, et al. High mobility group A1 is a molecular target for MYCN in human neuroblastoma. Cancer Res. 2005;65:8308–16.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Guo C, White PS, Weiss MJ, Hogarty MD, Thompson PM, Stram DO, et al. Allelic deletion at 11q23 is common in MYCN single copy neuroblastomas. Oncogene. 1999;18:4948–57.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18:3016–27.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hecht M, Schulte JH, Eggert A, Wilting J, Schweigerer L. The neurotrophin receptor TrkB cooperates with c-Met in enhancing neuroblastoma invasiveness. Carcinogenesis. 2005;26:2105–15.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Ho R, Eggert A, Hishiki T, Minturn JE, Ikegaki N, Foster P, et al. Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res. 2002;62:6462–6.PubMedPubMedCentralGoogle Scholar
  27. Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One. 2006;1:e116.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Huber K, Combs S, Ernsberger U, Kalcheim C, Unsicker K. Generation of neuroendocrine chromaffin cells from sympathoadrenal progenitors: beyond the glucocorticoid hypothesis. Ann N Y Acad Sci. 2002;971:554–9.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Iavarone A, Lasorella A. Id proteins in neural cancer. Cancer Lett. 2004;204:189–96.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V, et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature. 2008;455:967–70.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Katzenstein HM, Bowman LC, Brodeur GM, Thorner PS, Joshi VV, Smith EI, et al. Prognostic significance of age, MYCN oncogene amplification, tumor cell ploidy, and histology in 110 infants with stage D(S) neuroblastoma: the pediatric oncology group experience – a pediatric oncology group study. J Clin Oncol. 1998;16:2007–17.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Kim JW, Wong CW, Goldsmith JD, Song C, Fu W, Allion MB, et al. Rapid apoptosis in the pulmonary vasculature distinguishes non-metastatic from metastatic melanoma cells. Cancer Lett. 2004;213:203–12.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051–60.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Lynch J, Fay J, Meehan M, Bryan K, Watters KM, Murphy DM, et al. MiRNA-335 suppresses neuroblastoma cell invasiveness by direct targeting of multiple genes from the non-canonical TGF-beta signalling pathway. Carcinogenesis. 2012;33:976–85.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Lynch J, Meehan MH, Crean J, Copeland J, Stallings RL, Bray IM. Metastasis Suppressor microRNA-335 Targets the Formin Family of Actin Nucleators. PLoS One. 2013;8:e78428.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Manohar CF, Bray JA, Salwen HR, Madafiglio J, Cheng A, Flemming C, et al. MYCN-mediated regulation of the MRP1 promoter in human neuroblastoma. Oncogene. 2004;23:753–62.PubMedCrossRefPubMedCentralGoogle Scholar
  38. McArdle L, McDermott M, Purcell R, Grehan D, O’Meara A, Breatnach F, et al. Oligonucleotide microarray analysis of gene expression in neuroblastoma displaying loss of chromosome 11q. Carcinogenesis. 2004;25:1599–609.PubMedCrossRefGoogle Scholar
  39. Morowitz M, Shusterman S, Mosse Y, Hii G, Winter CL, Khazi D, et al. Detection of single-copy chromosome 17q gain in human neuroblastomas using real-time quantitative polymerase chain reaction. Mod Pathol. 2003;16:1248–56.PubMedCrossRefGoogle Scholar
  40. Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455:930–5.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Murphy DM, Buckley PG, Bryan K, Watters KM, Koster J, van Sluis P, et al. Dissection of the oncogenic MYCN transcriptional network reveals a large set of clinically relevant cell cycle genes as drivers of neuroblastoma tumorigenesis. Mol Carcinog. 2011a;50:403–11.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Murphy DM, Buckley PG, Das S, Watters KM, Bryan K, Stallings RL. Co-localization of the oncogenic transcription factor MYCN and the DNA methyl binding protein MeCP2 at genomic sites in neuroblastoma. PLoS One. 2011b;6:e21436.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Nakagawara A. Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett. 2001;169:107–14.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Nakamura Y, Ozaki T, Koseki H, Nakagawara A, Sakiyama S. Accumulation of p27 KIP1 is associated with BMP2-induced growth arrest and neuronal differentiation of human neuroblastoma-derived cell lines. Biochem Biophys Res Commun. 2003;307:206–13.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Nowacki S, Skowron M, Oberthuer A, Fagin A, Voth H, Brors B, et al. Expression of the tumour suppressor gene CADM1 is associated with favourable outcome and inhibits cell survival in neuroblastoma. Oncogene. 2008;27:3329–38.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Otto T, Horn S, Brockmann M, Eilers U, Schuttrumpf L, Popov N, et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell. 2009;15:67–78.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ryan J, Tivnan A, Fay J, Bryan K, Meehan M, Creevey L, et al. MicroRNA-204 increases sensitivity of neuroblastoma cells to cisplatin and is associated with a favourable clinical outcome. Br J Cancer. 2012;107:967–76.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Schulte JH, Marschall T, Martin M, Rosenstiel P, Mestdagh P, Schlierf S, et al. Deep sequencing reveals differential expression of microRNAs in favorable versus unfavorable neuroblastoma. Nucleic Acids Res. 2010;38:5919–28.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Shang X, Burlingame SM, Okcu MF, Ge N, Russell HV, Egler RA, et al. Aurora A is a negative prognostic factor and a new therapeutic target in human neuroblastoma. Mol Cancer Ther. 2009;8:2461–9.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Slack A, Chen Z, Tonelli R, Pule M, Hunt L, Pession A, et al. The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma. Proc Natl Acad Sci USA. 2005;102:731–6.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Slamon DJ, Boone TC, Seeger RC, Keith DE, Chazin V, Lee HC, et al. Identification and characterization of the protein encoded by the human N-myc oncogene. Science. 1986;232:768–72.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Soriano A, Masanas M, Boloix A, et al. Functional high-throughput screening reveals miR-323a-5p and miR-342-5p as new tumor-suppressive microRNA for neuroblastoma. Cell Mol Life Sci. 2019;76(11):2231–43.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Thompson PM, Gotoh T, Kok M, White PS, Brodeur GM. CHD5, a new member of the chromodomain gene family, is preferentially expressed in the nervous system. Oncogene. 2003;22:1002–11.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Tivnan A, Orr WS, Gubala V, Nooney R, Williams DE, McDonagh C, et al. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS One. 2012;7:e38129.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Van Roy N, Laureys G, Cheng NC, Willem P, Opdenakker G, Versteeg R, et al. 1;17 translocations and other chromosome 17 rearrangements in human primary neuroblastoma tumors and cell lines. Genes Chromosomes Cancer. 1994;10:103–14.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 1997;16:2985–95.PubMedPubMedCentralCrossRefGoogle Scholar
  58. White PS, Thompson PM, Gotoh T, Okawa ER, Igarashi J, Kok M, et al. Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma. Oncogene. 2005;24:2684–94.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Yang J, Mani SA, Weinberg RA. Exploring a new twist on tumor metastasis. Cancer Res. 2006;66:4549–52.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Zhang H, Qi M, Li S, Qi T, Mei H, Huang K, et al. microRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis, and angiogenesis of neuroblastoma cells. Mol Cancer Ther. 2012a;11:1454–66.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Zhang H, Pu J, Qi T, Qi M, Yang C, Li S, et al. MicroRNA-145 inhibits the growth, invasion, metastasis and angiogenesis of neuroblastoma cells through targeting hypoxia-inducible factor 2 alpha. Oncogene. 2012b;33:387–97.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Molecular and Cellular TherapeuticsRoyal College of Surgeons in IrelandDublin 2Ireland
  2. 2.National Children’s Research CentreOur Lady’s Children’s HospitalCrumlin, Dublin 12Ireland

Personalised recommendations