Immunology and Immunodeficiencies in Children

  • Saima AslamEmail author
  • Fiona O’Hare
  • Hassan Eliwan
  • Eleanor J. Molloy
Living reference work entry

Latest version View entry history



The immune system in neonates is different to that of adults and evolves in the first few years of life to achieve adult-like responses. This chapter highlights the response of the immune system to sepsis both in pediatric and neonatal age groups and the intricate balance between pro-inflammatory and anti-inflammatory responses to limit the damage secondary to infections. Immunodeficiencies primary or acquired are described in detail including their common presentations, common pathogens involved, the cell type involved, mechanism of deficiency, treatment, and prognosis including specific considerations for these patients prior to surgery. Immunomodulation of immune system either by alteration in ligand receptor binding or intracellular signal can help to modulate the disease process and may alter the prognosis for children with sepsis in the future.


Innate immune system Neutrophils Lymphocytes Toll-like receptors Systemic inflammatory response syndrome Natural killer cell Dendritic cells Immunomodulation Primary immunodeficiencies Acquired immunodeficiencies 


  1. Ashare A, Powers LS, Butler NS, Doerschug KC, Monick MM, Hunninghake GW. Anti-inflammatory response is associated with mortality and severity of infection in sepsis. Am J Physiol Lung Cell Mol Physiol. 2005;288(4):L633–40.CrossRefGoogle Scholar
  2. Bone RC. Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med. 1996;24(7):1125–8.CrossRefGoogle Scholar
  3. Bonilla FA, Bernstein IL, Khan DA, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. Ann Allergy Asthma Immunol. 2005;94(5 Suppl 1):S1–63.CrossRefGoogle Scholar
  4. Bonilla FA, Bernstein IL, Khan DA, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol. 2015;136(5):1186–205.e1–78.CrossRefGoogle Scholar
  5. Bonner S, Yan SR, Byers DM, Bortolussi R. Activation of extracellular signal-related protein kinases 1 and 2 of the mitogen-activated protein kinase family by lipopolysaccharide requires plasma in neutrophils from adults and newborns. Infect Immun. 2001;69(5):3143–9.CrossRefGoogle Scholar
  6. Cairo MS. Neonatal neutrophil host defense. Prospects for immunologic enhancement during neonatal sepsis. Am J Dis Child. 1989;143(1):40–6.CrossRefGoogle Scholar
  7. Calandra T. Pathogenesis of septic shock: implications for prevention and treatment. J Chemother. 2001;13 Spec No 1(1):173–80.CrossRefGoogle Scholar
  8. Cant AJ, Gibb DM, Davies EG, Cale C, Gennery AR. Immunodeficiency chapter. In: McIntosh N, Helms P, Smyth RL, editors. Forfar and Arneil’s textbook of pediatrics. 6th ed. Edinburgh: Churchill Livingstone; 2003.Google Scholar
  9. Carcillo JA. Pediatric septic shock and multiple organ failure. Crit Care Clin. 2003;19(3):413–40, viii.CrossRefGoogle Scholar
  10. Carr R. Neutrophil production and function in newborn infants. Br J Haematol. 2000;110(1):18–28.CrossRefGoogle Scholar
  11. Carr R, Brocklehurst P, Doré CJ, Modi N. Granulocyte-macrophage colony stimulating factor administered as prophylaxis for reduction of sepsis in extremely preterm, small for gestational age neonates (the PROGRAMS trial): a single-blind, multicentre, randomised controlled trial. Lancet. 2009;373(9659):226–33.CrossRefGoogle Scholar
  12. Crespo M, Martinez DG, Cerissi A, Rivera-Reyes B, Bernstein HB, Lederman MM, Sieg SF, Luciano AA. Neonatal T-cell maturation and homing receptor responses to Toll-like receptor ligands differ from those of adult naive T cells: relationship to prematurity. Pediatr Res. 2012;71(2):136–43.CrossRefGoogle Scholar
  13. Dammann O, Durum S, Leviton A. Do white cells matter in white matter damage? Trends Neurosci. 2001;24(6):320–4.CrossRefGoogle Scholar
  14. DiGiulio DB, Romero R, Amogan HP, Kusanovic JP, Bik EM, Gotsch F, Kim CJ, Erez O, Edwin S, Relman DA. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One. 2008;3(8):e3056.CrossRefGoogle Scholar
  15. Dorschner RA, Lin KH, Murakami M, Gallo RL. Neonatal skin in mice and humans expresses increased levels of antimicrobial peptides: innate immunity during development of the adaptive response. Pediatr Res. 2003;53(4):566–72.CrossRefGoogle Scholar
  16. Doughty LA, Kaplan SS, Carcillo JA. Inflammatory cytokine and nitric oxide responses in pediatric sepsis and organ failure. Crit Care Med. 1996;24(7):1137–43.CrossRefGoogle Scholar
  17. Gomez R, Romero R, Ghezzi F, Yoon BH, Mazor M, Berry SM. The fetal inflammatory response syndrome. Am J Obstet Gynecol. 1998;179(1):194–202.CrossRefGoogle Scholar
  18. Henneke P, Osmers I, Bauer K, Lamping N, Versmold HT, Schumann RR. ImpairedCD14-dependent and independent response of polymorphonuclear leukocytes in preterm infants. J Perinat Med. 2003;31(2):176–83.CrossRefGoogle Scholar
  19. Hodzic Z, Bolock AM, Good M. The role of mucosal immunity in the pathogenesis of necrotizing enterocolitis. Front Pediatr. 2017;5:40.Google Scholar
  20. INIS Collaborative Group, Brocklehurst P, Farrell B, et al. Treatment of neonatal sepsis with intravenous immune globulin. N Engl J Med. 2011;365(13):1201–11.CrossRefGoogle Scholar
  21. Janeway Jr CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.CrossRefGoogle Scholar
  22. Koenig JM, Stegner JJ, Schmeck AC, Saxonhouse MA, Kenigsberg LE. Neonatal neutrophils with prolonged survival exhibit enhanced inflammatory and cytotoxic responsiveness. Pediatr Res. 2005;57(3):424–9.CrossRefGoogle Scholar
  23. Kuhn P, Messer J, Paupe A, Espagne S, Kacet N, Mouchnino G, Klosowski S, Krim G, Lescure S, Le Bouedec S, Meyer P, Astruc D. A multicenter, randomized, placebo-controlled trial of prophylactic recombinant granulocyte-colony stimulating factor in preterm neonates with neutropenia. J Pediatr. 2009;155(3):324–30.CrossRefGoogle Scholar
  24. Lederer JA, Rodrick ML, Mannick JA. The effects of injury on the adaptive immune response. Shock. 1999;11(3):153–9.CrossRefGoogle Scholar
  25. Levy O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol. 2007;7(5):379–90.CrossRefGoogle Scholar
  26. Lougaris V, Baronio M, Masneri S, et al. Correlation of bone marrow abnormalities, peripheral lymphocyte subsets and clinical features in uncomplicated common variable immunodeficiency (CVID) patients. Clin Immunol. 2016;163:10–3.CrossRefGoogle Scholar
  27. Mara MA, Good M, Weitkamp JH. Innate and adaptive immunity in necrotizing enterocolitis. Semin Fetal Neonatal Med. 2018; S1744-165X(18):20094–5.Google Scholar
  28. Molloy EJ, O’Neill AJ, Grantham JJ, Sheridan-Pereira M, Fitzpatrick JM, Webb DW, Watson RW. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor have differential effects on neonatal and adult neutrophil survival and function. Pediatr Res. 2005;57(6):806–12.CrossRefGoogle Scholar
  29. Nadel S, Goldstein B, Williams MD, Dalton H, Peters M, Macias WL, Abd-Allah SA, Levy H, Angle R, Wang D, Sundin DP, Giroir B, REsearching severe Sepsis and Organ dysfunction in children: a gLobal perspective (RESOLVE) study group. Drotrecogin alfa (activated) in children with severe sepsis: a multicentre phase III randomised controlled trial. Lancet. 2007;369(9564):836–43.CrossRefGoogle Scholar
  30. Nelson KB, Willoughby RE. Infection, inflammation and the risk of cerebral palsy. Curr Opin Neurol. 2000;13(2):133–9. Scholar
  31. Neu J. Perinatal and neonatal manipulation of the intestinal microbiome: a note of caution. Nutr Rev. 2007;65(6 Pt 1):282–5.CrossRefGoogle Scholar
  32. Ng PC, Li K, Wong RP, Chui K, Wong E, Li G, Fok TF. Proinflammatory and anti-inflammatory cytokine responses in preterm infants with systemic infections. Arch Dis Child Fetal Neonatal Ed. 2003;88(3):F209–13.CrossRefGoogle Scholar
  33. O’Hare FM, William Watson R, Molloy EJ. Toll-like receptors in neonatal sepsis. Acta Paediatr. 2013;102(6):572–8.CrossRefGoogle Scholar
  34. Ohlsson A, Lacy JB. Intravenous immunoglobulin for preventing infection in preterm and/or low-birth-weight infants. Cochrane Database Syst Rev. 2004;(1):CD000361.Google Scholar
  35. Ohlsson A, Lacy JB. Intravenous immunoglobulin for preventing infection in preterm and/or low birth weight infants. Cochrane Database Syst Rev. 2013;(7):CD000361.Google Scholar
  36. Ohlsson A, Lacy JB. Intravenous immunoglobulin for suspected or proven infection in neonates. Cochrane Database Syst Rev. 2015;(3):CD001239.Google Scholar
  37. Proulx F, Gauthier M, Nadeau D, Lacroix J, Farrell CA. Timing and predictors of death in pediatric patients with multiple organ system failure. Crit Care Med. 1994;22(6):1025–31.CrossRefGoogle Scholar
  38. Raymond SL, Lopez MC, Baker HV, et al. Unique transcriptomic response to sepsis is observed among patients of different age groups. PloS One. 2017;12(9):e0184159.CrossRefGoogle Scholar
  39. Standage SW, Wong HR. Biomarkers for pediatric sepsis and septic shock. Expert Rev Anti-Infect Ther. 2011;9(1):71–9.CrossRefGoogle Scholar
  40. Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, Lemons JA, Donovan EF, Stark AR, Tyson JE, Oh W, Bauer CR, Korones SB, Shankaran S, Laptook AR, Stevenson DK, Papile LA, Poole WK. Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants. NEJM. 2002;347(4):240–7.CrossRefGoogle Scholar
  41. Viemann D, Dubbel G, Schleifenbaum S, Harms E, Sorg C, Roth J. Expression of toll-like receptors in neonatal sepsis. Pediatr Res. 2005;58(4):654–9.CrossRefGoogle Scholar
  42. Watson RS, Carcillo JA, Linde-Zwirble WT, Clermont G, Lidicker J, Angus DC. The epidemiology of severe sepsis in children in the United States. Am J Respir Crit Care Med. 2003;167(5):695–701.CrossRefGoogle Scholar
  43. Wheeler DS, Jeffries HE, Zimmerman JJ, Wong HR, Carcillo JA. Sepsis in the pediatric cardiac intensive care unit. World J Pediatr Congenit Heart Surg. 2011;2(3):393–9. Scholar
  44. Wolfs TG, Buurman WA, Zoer B, Moonen RM, Derikx JP, Thuijls G, Villamor E, Gantert M, Garnier Y, Zimmermann LJ, Kramer BW. Endotoxin induced chorioamnionitis prevents intestinal development during gestation in fetal sheep. PLoS One. 2009;4(6):e5837.CrossRefGoogle Scholar
  45. Wynn JL, Neu J, Moldawer LL, Levy O. Potential of immunomodulatory agents for prevention and treatment of neonatal sepsis. J Perinatol. 2009;29(2):79–88.CrossRefGoogle Scholar
  46. Wynn J, Cornell TT, Wong HR, Shanley TP, Wheeler DS. The host response to sepsis and development impact. Pediatrics. 2010;125(5):1031–41.CrossRefGoogle Scholar
  47. Xiao X, Miao Q, Chang C, et al. Common variable immunodeficiency and autoimmunity – an inconvenient truth. Autoimmun Rev. 2014;13(8):858–64.CrossRefGoogle Scholar
  48. Yan SR, Byers DM, Bortolussi R. Role of protein tyrosine kinase p53/56 lyn indiminished lipopolysaccharide priming of formylmethionylleucyl-phenylalanine-induced superoxide production in human newborn neutrophils. Infect Immun. 2004;72(11):6455–62.CrossRefGoogle Scholar
  49. Yazji I, Sodhi CP, Lee EK, et al. Endothelial TLR4 activation impairs intestinal microcirculatory perfusion in necrotizing enterocolitis via eNOS-NO-nitrite signaling. Proc Natl Acad Sci U S A. 2013;110(23):9451–6.CrossRefGoogle Scholar
  50. Yost CC, Cody MJ, Harris ES, Thornton NL, McInturff AM, Martinez ML, Chandler NB, Rodesch CK, Albertine KH, Petti CA, Weyrich AS, Zimmerman GA. Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood. 2009;113(25):6419–27.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Saima Aslam
    • 1
    • 2
    Email author
  • Fiona O’Hare
    • 1
    • 2
  • Hassan Eliwan
    • 1
    • 2
  • Eleanor J. Molloy
    • 1
    • 2
  1. 1.Discipline of PaediatricsTrinity College, The University of DublinDublinIreland
  2. 2.Tallaght Hospital & Coombe Women’s and Infants University HospitalDublinIreland

Personalised recommendations